RosettaCodeData/Task/Matrix-multiplication/FreeBASIC/matrix-multiplication.basic

44 lines
1.4 KiB
Plaintext

type Matrix
dim as double m( any , any )
declare constructor ( )
declare constructor ( byval x as uinteger , byval y as uinteger )
end type
constructor Matrix ( )
end constructor
constructor Matrix ( byval x as uinteger , byval y as uinteger )
redim this.m( x - 1 , y - 1 )
end constructor
operator * ( byref a as Matrix , byref b as Matrix ) as Matrix
dim as Matrix ret
dim as uinteger i, j, k
if ubound( a.m , 2 ) = ubound( b.m , 1 ) and ubound( a.m , 1 ) = ubound( b.m , 2 ) then
redim ret.m( ubound( a.m , 1 ) , ubound( b.m , 2 ) )
for i = 0 to ubound( a.m , 1 )
for j = 0 to ubound( b.m , 2 )
for k = 0 to ubound( b.m , 1 )
ret.m( i , j ) += a.m( i , k ) * b.m( k , j )
next k
next j
next i
end if
return ret
end operator
'some garbage matrices for demonstration
dim as Matrix a = Matrix(4 , 2)
a.m(0 , 0) = 1 : a.m(0 , 1) = 0
a.m(1 , 0) = 0 : a.m(1 , 1) = 1
a.m(2 , 0) = 2 : a.m(2 , 1) = 3
a.m(3 , 0) = 0.75 : a.m(3 , 1) = -0.5
dim as Matrix b = Matrix( 2 , 4 )
b.m(0 , 0) = 3.1 : b.m(0 , 1) = 1.6 : b.m(0 , 2) = -99 : b.m (0, 3) = -8
b.m(1 , 0) = 2.7 : b.m(1 , 1) = 0.6 : b.m(1 , 2) = 0 : b.m(1,3) = 21
dim as Matrix c = a * b
print c.m(0, 0), c.m(0, 1), c.m(0, 2), c.m(0, 3)
print c.m(1, 0), c.m(1, 1), c.m(1, 2), c.m(1, 3)
print c.m(2, 0), c.m(2, 1), c.m(2, 2), c.m(2, 3)
print c.m(3, 0), c.m(3, 1), c.m(3, 2), c.m(3, 3)