RosettaCodeData/Task/LU-decomposition/C++/lu-decomposition.cpp

185 lines
5.7 KiB
C++

#include <cassert>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <limits>
#include <numeric>
#include <sstream>
#include <vector>
template <typename scalar_type> class matrix {
public:
matrix(size_t rows, size_t columns)
: rows_(rows), columns_(columns), elements_(rows * columns) {}
matrix(size_t rows, size_t columns, scalar_type value)
: rows_(rows), columns_(columns), elements_(rows * columns, value) {}
matrix(size_t rows, size_t columns,
const std::initializer_list<std::initializer_list<scalar_type>>& values)
: rows_(rows), columns_(columns), elements_(rows * columns) {
assert(values.size() <= rows_);
size_t i = 0;
for (const auto& row : values) {
assert(row.size() <= columns_);
std::copy(begin(row), end(row), &elements_[i]);
i += columns_;
}
}
size_t rows() const { return rows_; }
size_t columns() const { return columns_; }
const scalar_type& operator()(size_t row, size_t column) const {
assert(row < rows_);
assert(column < columns_);
return elements_[row * columns_ + column];
}
scalar_type& operator()(size_t row, size_t column) {
assert(row < rows_);
assert(column < columns_);
return elements_[row * columns_ + column];
}
private:
size_t rows_;
size_t columns_;
std::vector<scalar_type> elements_;
};
template <typename scalar_type>
void print(std::wostream& out, const matrix<scalar_type>& a) {
const wchar_t* box_top_left = L"\x23a1";
const wchar_t* box_top_right = L"\x23a4";
const wchar_t* box_left = L"\x23a2";
const wchar_t* box_right = L"\x23a5";
const wchar_t* box_bottom_left = L"\x23a3";
const wchar_t* box_bottom_right = L"\x23a6";
const int precision = 5;
size_t rows = a.rows(), columns = a.columns();
std::vector<size_t> width(columns);
for (size_t column = 0; column < columns; ++column) {
size_t max_width = 0;
for (size_t row = 0; row < rows; ++row) {
std::ostringstream str;
str << std::fixed << std::setprecision(precision) << a(row, column);
max_width = std::max(max_width, str.str().length());
}
width[column] = max_width;
}
out << std::fixed << std::setprecision(precision);
for (size_t row = 0; row < rows; ++row) {
const bool top(row == 0), bottom(row + 1 == rows);
out << (top ? box_top_left : (bottom ? box_bottom_left : box_left));
for (size_t column = 0; column < columns; ++column) {
if (column > 0)
out << L' ';
out << std::setw(width[column]) << a(row, column);
}
out << (top ? box_top_right : (bottom ? box_bottom_right : box_right));
out << L'\n';
}
}
// Return value is a tuple with elements (lower, upper, pivot)
template <typename scalar_type>
auto lu_decompose(const matrix<scalar_type>& input) {
assert(input.rows() == input.columns());
size_t n = input.rows();
std::vector<size_t> perm(n);
std::iota(perm.begin(), perm.end(), 0);
matrix<scalar_type> lower(n, n);
matrix<scalar_type> upper(n, n);
matrix<scalar_type> input1(input);
for (size_t j = 0; j < n; ++j) {
size_t max_index = j;
scalar_type max_value = 0;
for (size_t i = j; i < n; ++i) {
scalar_type value = std::abs(input1(perm[i], j));
if (value > max_value) {
max_index = i;
max_value = value;
}
}
if (max_value <= std::numeric_limits<scalar_type>::epsilon())
throw std::runtime_error("matrix is singular");
if (j != max_index)
std::swap(perm[j], perm[max_index]);
size_t jj = perm[j];
for (size_t i = j + 1; i < n; ++i) {
size_t ii = perm[i];
input1(ii, j) /= input1(jj, j);
for (size_t k = j + 1; k < n; ++k)
input1(ii, k) -= input1(ii, j) * input1(jj, k);
}
}
for (size_t j = 0; j < n; ++j) {
lower(j, j) = 1;
for (size_t i = j + 1; i < n; ++i)
lower(i, j) = input1(perm[i], j);
for (size_t i = 0; i <= j; ++i)
upper(i, j) = input1(perm[i], j);
}
matrix<scalar_type> pivot(n, n);
for (size_t i = 0; i < n; ++i)
pivot(i, perm[i]) = 1;
return std::make_tuple(lower, upper, pivot);
}
template <typename scalar_type>
void show_lu_decomposition(const matrix<scalar_type>& input) {
try {
std::wcout << L"A\n";
print(std::wcout, input);
auto result(lu_decompose(input));
std::wcout << L"\nL\n";
print(std::wcout, std::get<0>(result));
std::wcout << L"\nU\n";
print(std::wcout, std::get<1>(result));
std::wcout << L"\nP\n";
print(std::wcout, std::get<2>(result));
} catch (const std::exception& ex) {
std::cerr << ex.what() << '\n';
}
}
int main() {
std::wcout.imbue(std::locale(""));
std::wcout << L"Example 1:\n";
matrix<double> matrix1(3, 3,
{{1, 3, 5},
{2, 4, 7},
{1, 1, 0}});
show_lu_decomposition(matrix1);
std::wcout << '\n';
std::wcout << L"Example 2:\n";
matrix<double> matrix2(4, 4,
{{11, 9, 24, 2},
{1, 5, 2, 6},
{3, 17, 18, 1},
{2, 5, 7, 1}});
show_lu_decomposition(matrix2);
std::wcout << '\n';
std::wcout << L"Example 3:\n";
matrix<double> matrix3(3, 3,
{{-5, -6, -3},
{-1, 0, -2},
{-3, -4, -7}});
show_lu_decomposition(matrix3);
std::wcout << '\n';
std::wcout << L"Example 4:\n";
matrix<double> matrix4(3, 3,
{{1, 2, 3},
{4, 5, 6},
{7, 8, 9}});
show_lu_decomposition(matrix4);
return 0;
}