185 lines
5.7 KiB
C++
185 lines
5.7 KiB
C++
#include <cassert>
|
|
#include <cmath>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <limits>
|
|
#include <numeric>
|
|
#include <sstream>
|
|
#include <vector>
|
|
|
|
template <typename scalar_type> class matrix {
|
|
public:
|
|
matrix(size_t rows, size_t columns)
|
|
: rows_(rows), columns_(columns), elements_(rows * columns) {}
|
|
|
|
matrix(size_t rows, size_t columns, scalar_type value)
|
|
: rows_(rows), columns_(columns), elements_(rows * columns, value) {}
|
|
|
|
matrix(size_t rows, size_t columns,
|
|
const std::initializer_list<std::initializer_list<scalar_type>>& values)
|
|
: rows_(rows), columns_(columns), elements_(rows * columns) {
|
|
assert(values.size() <= rows_);
|
|
size_t i = 0;
|
|
for (const auto& row : values) {
|
|
assert(row.size() <= columns_);
|
|
std::copy(begin(row), end(row), &elements_[i]);
|
|
i += columns_;
|
|
}
|
|
}
|
|
|
|
size_t rows() const { return rows_; }
|
|
size_t columns() const { return columns_; }
|
|
|
|
const scalar_type& operator()(size_t row, size_t column) const {
|
|
assert(row < rows_);
|
|
assert(column < columns_);
|
|
return elements_[row * columns_ + column];
|
|
}
|
|
scalar_type& operator()(size_t row, size_t column) {
|
|
assert(row < rows_);
|
|
assert(column < columns_);
|
|
return elements_[row * columns_ + column];
|
|
}
|
|
private:
|
|
size_t rows_;
|
|
size_t columns_;
|
|
std::vector<scalar_type> elements_;
|
|
};
|
|
|
|
template <typename scalar_type>
|
|
void print(std::wostream& out, const matrix<scalar_type>& a) {
|
|
const wchar_t* box_top_left = L"\x23a1";
|
|
const wchar_t* box_top_right = L"\x23a4";
|
|
const wchar_t* box_left = L"\x23a2";
|
|
const wchar_t* box_right = L"\x23a5";
|
|
const wchar_t* box_bottom_left = L"\x23a3";
|
|
const wchar_t* box_bottom_right = L"\x23a6";
|
|
|
|
const int precision = 5;
|
|
size_t rows = a.rows(), columns = a.columns();
|
|
std::vector<size_t> width(columns);
|
|
for (size_t column = 0; column < columns; ++column) {
|
|
size_t max_width = 0;
|
|
for (size_t row = 0; row < rows; ++row) {
|
|
std::ostringstream str;
|
|
str << std::fixed << std::setprecision(precision) << a(row, column);
|
|
max_width = std::max(max_width, str.str().length());
|
|
}
|
|
width[column] = max_width;
|
|
}
|
|
out << std::fixed << std::setprecision(precision);
|
|
for (size_t row = 0; row < rows; ++row) {
|
|
const bool top(row == 0), bottom(row + 1 == rows);
|
|
out << (top ? box_top_left : (bottom ? box_bottom_left : box_left));
|
|
for (size_t column = 0; column < columns; ++column) {
|
|
if (column > 0)
|
|
out << L' ';
|
|
out << std::setw(width[column]) << a(row, column);
|
|
}
|
|
out << (top ? box_top_right : (bottom ? box_bottom_right : box_right));
|
|
out << L'\n';
|
|
}
|
|
}
|
|
|
|
// Return value is a tuple with elements (lower, upper, pivot)
|
|
template <typename scalar_type>
|
|
auto lu_decompose(const matrix<scalar_type>& input) {
|
|
assert(input.rows() == input.columns());
|
|
size_t n = input.rows();
|
|
std::vector<size_t> perm(n);
|
|
std::iota(perm.begin(), perm.end(), 0);
|
|
matrix<scalar_type> lower(n, n);
|
|
matrix<scalar_type> upper(n, n);
|
|
matrix<scalar_type> input1(input);
|
|
for (size_t j = 0; j < n; ++j) {
|
|
size_t max_index = j;
|
|
scalar_type max_value = 0;
|
|
for (size_t i = j; i < n; ++i) {
|
|
scalar_type value = std::abs(input1(perm[i], j));
|
|
if (value > max_value) {
|
|
max_index = i;
|
|
max_value = value;
|
|
}
|
|
}
|
|
if (max_value <= std::numeric_limits<scalar_type>::epsilon())
|
|
throw std::runtime_error("matrix is singular");
|
|
if (j != max_index)
|
|
std::swap(perm[j], perm[max_index]);
|
|
size_t jj = perm[j];
|
|
for (size_t i = j + 1; i < n; ++i) {
|
|
size_t ii = perm[i];
|
|
input1(ii, j) /= input1(jj, j);
|
|
for (size_t k = j + 1; k < n; ++k)
|
|
input1(ii, k) -= input1(ii, j) * input1(jj, k);
|
|
}
|
|
}
|
|
|
|
for (size_t j = 0; j < n; ++j) {
|
|
lower(j, j) = 1;
|
|
for (size_t i = j + 1; i < n; ++i)
|
|
lower(i, j) = input1(perm[i], j);
|
|
for (size_t i = 0; i <= j; ++i)
|
|
upper(i, j) = input1(perm[i], j);
|
|
}
|
|
|
|
matrix<scalar_type> pivot(n, n);
|
|
for (size_t i = 0; i < n; ++i)
|
|
pivot(i, perm[i]) = 1;
|
|
|
|
return std::make_tuple(lower, upper, pivot);
|
|
}
|
|
|
|
template <typename scalar_type>
|
|
void show_lu_decomposition(const matrix<scalar_type>& input) {
|
|
try {
|
|
std::wcout << L"A\n";
|
|
print(std::wcout, input);
|
|
auto result(lu_decompose(input));
|
|
std::wcout << L"\nL\n";
|
|
print(std::wcout, std::get<0>(result));
|
|
std::wcout << L"\nU\n";
|
|
print(std::wcout, std::get<1>(result));
|
|
std::wcout << L"\nP\n";
|
|
print(std::wcout, std::get<2>(result));
|
|
} catch (const std::exception& ex) {
|
|
std::cerr << ex.what() << '\n';
|
|
}
|
|
}
|
|
|
|
int main() {
|
|
std::wcout.imbue(std::locale(""));
|
|
std::wcout << L"Example 1:\n";
|
|
matrix<double> matrix1(3, 3,
|
|
{{1, 3, 5},
|
|
{2, 4, 7},
|
|
{1, 1, 0}});
|
|
show_lu_decomposition(matrix1);
|
|
std::wcout << '\n';
|
|
|
|
std::wcout << L"Example 2:\n";
|
|
matrix<double> matrix2(4, 4,
|
|
{{11, 9, 24, 2},
|
|
{1, 5, 2, 6},
|
|
{3, 17, 18, 1},
|
|
{2, 5, 7, 1}});
|
|
show_lu_decomposition(matrix2);
|
|
std::wcout << '\n';
|
|
|
|
std::wcout << L"Example 3:\n";
|
|
matrix<double> matrix3(3, 3,
|
|
{{-5, -6, -3},
|
|
{-1, 0, -2},
|
|
{-3, -4, -7}});
|
|
show_lu_decomposition(matrix3);
|
|
std::wcout << '\n';
|
|
|
|
std::wcout << L"Example 4:\n";
|
|
matrix<double> matrix4(3, 3,
|
|
{{1, 2, 3},
|
|
{4, 5, 6},
|
|
{7, 8, 9}});
|
|
show_lu_decomposition(matrix4);
|
|
|
|
return 0;
|
|
}
|