RosettaCodeData/Task/Knights-tour/Java/knights-tour-2.java

159 lines
5.4 KiB
Java

package com.knight.tour;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
public class KT {
private int baseSize = 12; // virtual board size including unreachable out-of-board nodes. i.e. base 12 = 8X8 board
int actualBoardSize = baseSize - 4;
private static final int[][] moves = { { 1, -2 }, { 2, -1 }, { 2, 1 }, { 1, 2 }, { -1, 2 }, { -2, 1 }, { -2, -1 },
{ -1, -2 } };
private static int[][] grid;
private static int totalNodes;
private ArrayList<int[]> travelledNodes = new ArrayList<>();
public KT(int baseNumber) {
this.baseSize = baseNumber;
this.actualBoardSize = baseSize - 4;
}
public static void main(String[] args) {
new KT(12).tour(); // find a solution for 8X8 board
// new KT(24).tour(); // then for 20X20 board
// new KT(104).tour(); // then for 100X100 board
}
private void tour() {
totalNodes = actualBoardSize * actualBoardSize;
travelledNodes.clear();
grid = new int[baseSize][baseSize];
for (int r = 0; r < baseSize; r++)
for (int c = 0; c < baseSize; c++) {
if (r < 2 || r > baseSize - 3 || c < 2 || c > baseSize - 3) {
grid[r][c] = -1; // mark as out-of-board nodes
} else {
grid[r][c] = 0; // nodes within chess board.
}
}
// start from a random node
int startRow = 2 + (int) (Math.random() * actualBoardSize);
int startCol = 2 + (int) (Math.random() * actualBoardSize);
int[] start = { startRow, startCol, 0, 1 };
grid[startRow][startCol] = 1; // mark the first traveled node
travelledNodes.add(start); // add to partial solution chain, which will only have one node.
// Start traveling forward
autoKnightTour(start, 2);
}
// non-backtracking touring methods. Re-chain the partial solution when all neighbors are traveled to avoid back-tracking.
private void autoKnightTour(int[] start, int nextCount) {
List<int[]> nbrs = neighbors(start[0], start[1]);
if (nbrs.size() > 0) {
Collections.sort(nbrs, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
return a[2] - b[2];
}
}); // sort the list
int[] next = nbrs.get(0); // the one with the less available neighbors - Warnsdorff's algorithm
next[3] = nextCount;
travelledNodes.add(next);
grid[next[0]][next[1]] = nextCount;
if (travelledNodes.size() == totalNodes) {
System.out.println("Found a path for " + actualBoardSize + " X " + actualBoardSize + " chess board.");
StringBuilder sb = new StringBuilder();
sb.append(System.lineSeparator());
for (int idx = 0; idx < travelledNodes.size(); idx++) {
int[] item = travelledNodes.get(idx);
sb.append("->(" + (item[0] - 2) + "," + (item[1] - 2) + ")");
if ((idx + 1) % 15 == 0) {
sb.append(System.lineSeparator());
}
}
System.out.println(sb.toString() + "\n");
} else { // continuing the travel
autoKnightTour(next, ++nextCount);
}
} else { // no travelable neighbors next - need to rechain the partial chain
int[] last = travelledNodes.get(travelledNodes.size() - 1);
travelledNodes = reChain(travelledNodes);
if (travelledNodes.get(travelledNodes.size() - 1).equals(last)) {
travelledNodes = reChain(travelledNodes);
if (travelledNodes.get(travelledNodes.size() - 1).equals(last)) {
System.out.println("Re-chained twice but no travllable node found. Quiting...");
} else {
int[] end = travelledNodes.get(travelledNodes.size() - 1);
autoKnightTour(end, nextCount);
}
} else {
int[] end = travelledNodes.get(travelledNodes.size() - 1);
autoKnightTour(end, nextCount);
}
}
}
private ArrayList<int[]> reChain(ArrayList<int[]> alreadyTraveled) {
int[] last = alreadyTraveled.get(alreadyTraveled.size() - 1);
List<int[]> candidates = neighborsInChain(last[0], last[1]);
int cutIndex;
int[] randomPicked = candidates.get((int) Math.random() * candidates.size());
cutIndex = grid[randomPicked[0]][randomPicked[1]] - 1;
ArrayList<int[]> result = new ArrayList<int[]>(); //create empty list to copy already traveled nodes to
for (int k = 0; k <= cutIndex; k++) {
result.add(result.size(), alreadyTraveled.get(k));
}
for (int j = alreadyTraveled.size() - 1; j > cutIndex; j--) {
alreadyTraveled.get(j)[3] = result.size();
result.add(result.size(), alreadyTraveled.get(j));
}
return result; // re-chained partial solution with different end node
}
private List<int[]> neighborsInChain(int r, int c) {
List<int[]> nbrs = new ArrayList<>();
for (int[] m : moves) {
int x = m[0];
int y = m[1];
if (grid[r + y][c + x] > 0 && grid[r + y][c + x] != grid[r][c] - 1) {
int num = countNeighbors(r + y, c + x);
nbrs.add(new int[] { r + y, c + x, num, 0 });
}
}
return nbrs;
}
private static List<int[]> neighbors(int r, int c) {
List<int[]> nbrs = new ArrayList<>();
for (int[] m : moves) {
int x = m[0];
int y = m[1];
if (grid[r + y][c + x] == 0) {
int num = countNeighbors(r + y, c + x);
nbrs.add(new int[] { r + y, c + x, num, 0 }); // not-traveled neighbors and number of their neighbors
}
}
return nbrs;
}
private List<int[]> extendableNeighbors(List<int[]> neighbors) {
List<int[]> nbrs = new ArrayList<>();
for (int[] node : neighbors) {
if (node[2] > 0)
nbrs.add(node);
}
return nbrs;
}
private static int countNeighbors(int r, int c) {
int num = 0;
for (int[] m : moves) {
if (grid[r + m[1]][c + m[0]] == 0) {
num++;
}
}
return num;
}
}