159 lines
5.4 KiB
Java
159 lines
5.4 KiB
Java
package com.knight.tour;
|
|
import java.util.ArrayList;
|
|
import java.util.Collections;
|
|
import java.util.Comparator;
|
|
import java.util.List;
|
|
|
|
public class KT {
|
|
|
|
private int baseSize = 12; // virtual board size including unreachable out-of-board nodes. i.e. base 12 = 8X8 board
|
|
int actualBoardSize = baseSize - 4;
|
|
private static final int[][] moves = { { 1, -2 }, { 2, -1 }, { 2, 1 }, { 1, 2 }, { -1, 2 }, { -2, 1 }, { -2, -1 },
|
|
{ -1, -2 } };
|
|
private static int[][] grid;
|
|
private static int totalNodes;
|
|
private ArrayList<int[]> travelledNodes = new ArrayList<>();
|
|
public KT(int baseNumber) {
|
|
this.baseSize = baseNumber;
|
|
this.actualBoardSize = baseSize - 4;
|
|
}
|
|
|
|
public static void main(String[] args) {
|
|
new KT(12).tour(); // find a solution for 8X8 board
|
|
// new KT(24).tour(); // then for 20X20 board
|
|
// new KT(104).tour(); // then for 100X100 board
|
|
}
|
|
|
|
private void tour() {
|
|
totalNodes = actualBoardSize * actualBoardSize;
|
|
travelledNodes.clear();
|
|
grid = new int[baseSize][baseSize];
|
|
for (int r = 0; r < baseSize; r++)
|
|
for (int c = 0; c < baseSize; c++) {
|
|
if (r < 2 || r > baseSize - 3 || c < 2 || c > baseSize - 3) {
|
|
grid[r][c] = -1; // mark as out-of-board nodes
|
|
} else {
|
|
grid[r][c] = 0; // nodes within chess board.
|
|
}
|
|
}
|
|
// start from a random node
|
|
int startRow = 2 + (int) (Math.random() * actualBoardSize);
|
|
int startCol = 2 + (int) (Math.random() * actualBoardSize);
|
|
int[] start = { startRow, startCol, 0, 1 };
|
|
grid[startRow][startCol] = 1; // mark the first traveled node
|
|
travelledNodes.add(start); // add to partial solution chain, which will only have one node.
|
|
|
|
// Start traveling forward
|
|
autoKnightTour(start, 2);
|
|
}
|
|
|
|
// non-backtracking touring methods. Re-chain the partial solution when all neighbors are traveled to avoid back-tracking.
|
|
private void autoKnightTour(int[] start, int nextCount) {
|
|
List<int[]> nbrs = neighbors(start[0], start[1]);
|
|
if (nbrs.size() > 0) {
|
|
Collections.sort(nbrs, new Comparator<int[]>() {
|
|
public int compare(int[] a, int[] b) {
|
|
return a[2] - b[2];
|
|
}
|
|
}); // sort the list
|
|
int[] next = nbrs.get(0); // the one with the less available neighbors - Warnsdorff's algorithm
|
|
next[3] = nextCount;
|
|
travelledNodes.add(next);
|
|
grid[next[0]][next[1]] = nextCount;
|
|
if (travelledNodes.size() == totalNodes) {
|
|
System.out.println("Found a path for " + actualBoardSize + " X " + actualBoardSize + " chess board.");
|
|
StringBuilder sb = new StringBuilder();
|
|
sb.append(System.lineSeparator());
|
|
for (int idx = 0; idx < travelledNodes.size(); idx++) {
|
|
int[] item = travelledNodes.get(idx);
|
|
sb.append("->(" + (item[0] - 2) + "," + (item[1] - 2) + ")");
|
|
if ((idx + 1) % 15 == 0) {
|
|
sb.append(System.lineSeparator());
|
|
}
|
|
}
|
|
System.out.println(sb.toString() + "\n");
|
|
} else { // continuing the travel
|
|
autoKnightTour(next, ++nextCount);
|
|
}
|
|
} else { // no travelable neighbors next - need to rechain the partial chain
|
|
int[] last = travelledNodes.get(travelledNodes.size() - 1);
|
|
travelledNodes = reChain(travelledNodes);
|
|
if (travelledNodes.get(travelledNodes.size() - 1).equals(last)) {
|
|
travelledNodes = reChain(travelledNodes);
|
|
if (travelledNodes.get(travelledNodes.size() - 1).equals(last)) {
|
|
System.out.println("Re-chained twice but no travllable node found. Quiting...");
|
|
} else {
|
|
int[] end = travelledNodes.get(travelledNodes.size() - 1);
|
|
autoKnightTour(end, nextCount);
|
|
}
|
|
} else {
|
|
int[] end = travelledNodes.get(travelledNodes.size() - 1);
|
|
autoKnightTour(end, nextCount);
|
|
}
|
|
}
|
|
}
|
|
|
|
private ArrayList<int[]> reChain(ArrayList<int[]> alreadyTraveled) {
|
|
int[] last = alreadyTraveled.get(alreadyTraveled.size() - 1);
|
|
List<int[]> candidates = neighborsInChain(last[0], last[1]);
|
|
int cutIndex;
|
|
int[] randomPicked = candidates.get((int) Math.random() * candidates.size());
|
|
cutIndex = grid[randomPicked[0]][randomPicked[1]] - 1;
|
|
ArrayList<int[]> result = new ArrayList<int[]>(); //create empty list to copy already traveled nodes to
|
|
for (int k = 0; k <= cutIndex; k++) {
|
|
result.add(result.size(), alreadyTraveled.get(k));
|
|
}
|
|
for (int j = alreadyTraveled.size() - 1; j > cutIndex; j--) {
|
|
alreadyTraveled.get(j)[3] = result.size();
|
|
result.add(result.size(), alreadyTraveled.get(j));
|
|
}
|
|
return result; // re-chained partial solution with different end node
|
|
}
|
|
|
|
private List<int[]> neighborsInChain(int r, int c) {
|
|
List<int[]> nbrs = new ArrayList<>();
|
|
for (int[] m : moves) {
|
|
int x = m[0];
|
|
int y = m[1];
|
|
if (grid[r + y][c + x] > 0 && grid[r + y][c + x] != grid[r][c] - 1) {
|
|
int num = countNeighbors(r + y, c + x);
|
|
nbrs.add(new int[] { r + y, c + x, num, 0 });
|
|
}
|
|
}
|
|
return nbrs;
|
|
}
|
|
|
|
private static List<int[]> neighbors(int r, int c) {
|
|
List<int[]> nbrs = new ArrayList<>();
|
|
for (int[] m : moves) {
|
|
int x = m[0];
|
|
int y = m[1];
|
|
if (grid[r + y][c + x] == 0) {
|
|
int num = countNeighbors(r + y, c + x);
|
|
nbrs.add(new int[] { r + y, c + x, num, 0 }); // not-traveled neighbors and number of their neighbors
|
|
}
|
|
}
|
|
return nbrs;
|
|
|
|
}
|
|
|
|
private List<int[]> extendableNeighbors(List<int[]> neighbors) {
|
|
List<int[]> nbrs = new ArrayList<>();
|
|
for (int[] node : neighbors) {
|
|
if (node[2] > 0)
|
|
nbrs.add(node);
|
|
}
|
|
return nbrs;
|
|
}
|
|
|
|
private static int countNeighbors(int r, int c) {
|
|
int num = 0;
|
|
for (int[] m : moves) {
|
|
if (grid[r + m[1]][c + m[0]] == 0) {
|
|
num++;
|
|
}
|
|
}
|
|
return num;
|
|
}
|
|
}
|