RosettaCodeData/Task/Higher-order-functions/AppleScript/higher-order-functions-2.ap...

116 lines
2.6 KiB
AppleScript

on run
-- PASSING FUNCTIONS AS ARGUMENTS TO
-- MAP, FOLD/REDUCE, AND FILTER, ACROSS A LIST
set lstRange to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
map(squared, lstRange)
--> {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
foldl(summed, 0, map(squared, lstRange))
--> 385
filter(isEven, lstRange)
--> {0, 2, 4, 6, 8, 10}
-- OR MAPPING OVER A LIST OF FUNCTIONS
map(testFunction, {doubled, squared, isEven})
--> {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20},
-- {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100},
-- {true, false, true, false, true, false, true, false, true, false, true}}
end run
-- testFunction :: (a -> b) -> [b]
on testFunction(f)
map(f, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10})
end testFunction
-- MAP, REDUCE, FILTER
-- Returns a new list consisting of the results of applying the
-- provided function to each element of the first list
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- Applies a function against an accumulator and
-- each list element (from left-to-right) to reduce it
-- to a single return value
-- In some languages, like JavaScript, this is called reduce()
-- Arguments: function, initial value of accumulator, list
-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl
-- Sublist of those elements for which the predicate
-- function returns true
-- filter :: (a -> Bool) -> [a] -> [a]
on filter(f, xs)
tell mReturn(f)
set lst to {}
set lng to length of xs
repeat with i from 1 to lng
set v to item i of xs
if |λ|(v, i, xs) then set end of lst to v
end repeat
return lst
end tell
end filter
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- HANDLER FUNCTIONS TO BE PASSED AS ARGUMENTS
-- squared :: Number -> Number
on squared(x)
x * x
end squared
-- doubled :: Number -> Number
on doubled(x)
x * 2
end doubled
-- summed :: Number -> Number -> Number
on summed(a, b)
a + b
end summed
-- isEven :: Int -> Bool
on isEven(x)
x mod 2 = 0
end isEven