RosettaCodeData/Task/Fast-Fourier-transform/Fortran/fast-fourier-transform.f

59 lines
1.2 KiB
Fortran

module fft_mod
implicit none
integer, parameter :: dp=selected_real_kind(15,300)
real(kind=dp), parameter :: pi=3.141592653589793238460_dp
contains
! In place Cooley-Tukey FFT
recursive subroutine fft(x)
complex(kind=dp), dimension(:), intent(inout) :: x
complex(kind=dp) :: t
integer :: N
integer :: i
complex(kind=dp), dimension(:), allocatable :: even, odd
N=size(x)
if(N .le. 1) return
allocate(odd((N+1)/2))
allocate(even(N/2))
! divide
odd =x(1:N:2)
even=x(2:N:2)
! conquer
call fft(odd)
call fft(even)
! combine
do i=1,N/2
t=exp(cmplx(0.0_dp,-2.0_dp*pi*real(i-1,dp)/real(N,dp),kind=dp))*even(i)
x(i) = odd(i) + t
x(i+N/2) = odd(i) - t
end do
deallocate(odd)
deallocate(even)
end subroutine fft
end module fft_mod
program test
use fft_mod
implicit none
complex(kind=dp), dimension(8) :: data = (/1.0, 1.0, 1.0, 1.0, 0.0,
0.0, 0.0, 0.0/)
integer :: i
call fft(data)
do i=1,8
write(*,'("(", F20.15, ",", F20.15, "i )")') data(i)
end do
end program test