RosettaCodeData/Task/Extensible-prime-generator/C++/extensible-prime-generator-...

127 lines
3.4 KiB
C++

#include <algorithm>
#include <iostream>
#include <cmath>
#include <cstdint>
#include <vector>
#include <limits>
template<typename integer>
class prime_generator {
public:
explicit prime_generator(integer initial_limit = 100, integer increment = 100000);
integer next_prime();
integer count() const {
return count_;
}
private:
void find_primes(integer);
integer count_ = 0;
integer limit_;
integer index_ = 0;
integer increment_;
std::vector<integer> primes_;
std::vector<bool> sieve_;
integer sieve_limit_ = 0;
};
template<typename integer>
integer next_odd_number(integer n) {
return n % 2 == 0 ? n + 1 : n;
}
template<typename integer>
prime_generator<integer>::prime_generator(integer initial_limit, integer increment)
: limit_(next_odd_number(initial_limit)), increment_(increment) {
primes_.push_back(2);
find_primes(3);
}
template<typename integer>
integer prime_generator<integer>::next_prime() {
if (index_ == primes_.size()) {
if (std::numeric_limits<integer>::max() - increment_ < limit_)
return 0;
int start = limit_ + 2;
limit_ = next_odd_number(limit_ + increment_);
primes_.clear();
find_primes(start);
}
++count_;
return primes_[index_++];
}
template<typename integer>
integer isqrt(integer n) {
return next_odd_number(static_cast<integer>(std::sqrt(n)));
}
template<typename integer>
void prime_generator<integer>::find_primes(integer start) {
index_ = 0;
integer new_limit = isqrt(limit_);
sieve_.resize(new_limit/2);
for (integer p = 3; p * p <= new_limit; p += 2) {
if (sieve_[p/2 - 1])
continue;
integer q = p * std::max(p, next_odd_number((sieve_limit_ + p - 1)/p));
for (; q <= new_limit; q += 2*p)
sieve_[q/2 - 1] = true;
}
sieve_limit_ = new_limit;
size_t count = (limit_ - start)/2 + 1;
std::vector<bool> composite(count, false);
for (integer p = 3; p <= new_limit; p += 2) {
if (sieve_[p/2 - 1])
continue;
integer q = p * std::max(p, next_odd_number((start + p - 1)/p)) - start;
q /= 2;
for (; q < count; q += p)
composite[q] = true;
}
for (integer p = 0; p < count; ++p) {
if (!composite[p])
primes_.push_back(p * 2 + start);
}
}
int main() {
typedef uint64_t integer;
prime_generator<integer> pgen(100, 500000);
std::cout << "First 20 primes:\n";
for (int i = 0; i < 20; ++i) {
integer p = pgen.next_prime();
if (i != 0)
std::cout << ", ";
std::cout << p;
}
std::cout << "\nPrimes between 100 and 150:\n";
for (int n = 0; ; ) {
integer p = pgen.next_prime();
if (p > 150)
break;
if (p >= 100) {
if (n != 0)
std::cout << ", ";
std::cout << p;
++n;
}
}
int count = 0;
for (;;) {
integer p = pgen.next_prime();
if (p > 8000)
break;
if (p >= 7700)
++count;
}
std::cout << "\nNumber of primes between 7700 and 8000: " << count << '\n';
for (integer n = 10000; n <= 100000000; n *= 10) {
integer prime;
while (pgen.count() != n)
prime = pgen.next_prime();
std::cout << n << "th prime: " << prime << '\n';
}
return 0;
}