RosettaCodeData/Task/Evaluate-binomial-coefficients/Java/evaluate-binomial-coefficie...

72 lines
2.0 KiB
Java

public class Binomial {
// precise, but may overflow and then produce completely incorrect results
private static long binomialInt(int n, int k) {
if (k > n - k)
k = n - k;
long binom = 1;
for (int i = 1; i <= k; i++)
binom = binom * (n + 1 - i) / i;
return binom;
}
// same as above, but with overflow check
private static Object binomialIntReliable(int n, int k) {
if (k > n - k)
k = n - k;
long binom = 1;
for (int i = 1; i <= k; i++) {
try {
binom = Math.multiplyExact(binom, n + 1 - i) / i;
} catch (ArithmeticException e) {
return "overflow";
}
}
return binom;
}
// using floating point arithmetic, larger numbers can be calculated,
// but with reduced precision
private static double binomialFloat(int n, int k) {
if (k > n - k)
k = n - k;
double binom = 1.0;
for (int i = 1; i <= k; i++)
binom = binom * (n + 1 - i) / i;
return binom;
}
// slow, hard to read, but precise
private static BigInteger binomialBigInt(int n, int k) {
if (k > n - k)
k = n - k;
BigInteger binom = BigInteger.ONE;
for (int i = 1; i <= k; i++) {
binom = binom.multiply(BigInteger.valueOf(n + 1 - i));
binom = binom.divide(BigInteger.valueOf(i));
}
return binom;
}
private static void demo(int n, int k) {
List<Object> data = Arrays.asList(
n,
k,
binomialInt(n, k),
binomialIntReliable(n, k),
binomialFloat(n, k),
binomialBigInt(n, k));
System.out.println(data.stream().map(Object::toString).collect(Collectors.joining("\t")));
}
public static void main(String[] args) {
demo(5, 3);
demo(1000, 300);
}
}