RosettaCodeData/Task/Eertree/Racket/eertree.rkt

86 lines
3.8 KiB
Racket

#lang racket
(struct node (edges ; edges (or forward links)
link ; suffix link (backward links)
len) ; the length of the node
#:mutable)
(define (new-node link len) (node (make-hash) link len))
(struct eertree (nodes
rto ; odd length root node, or node -1
rte ; even length root node, or node 0
S ; accumulated input string, T=S[1..i]
max-suf-t) ; maximum suffix of tree T
#:mutable)
(define (new-eertree)
(let* ((rto (new-node #f -1))
(rte (new-node rto 0)))
(eertree null rto rte (list 0) rte)))
(define (eertree-get-max-suffix-pal et start-node a)
#| We traverse the suffix-palindromes of T in the order of decreasing length.
For each palindrome we read its length k and compare T[i-k] against a
until we get an equality or arrive at the -1 node. |#
(match et
[(eertree nodes rto rte (and S (app length i)) max-suf-t)
(let loop ((u start-node))
(let ((k (node-len u)))
(if (or (eq? u rto) (= (list-ref S (- i k 1)) a))
u
(let ((u→ (node-link u)))
(when (eq? u u→) (error 'eertree-get-max-suffix-pal "infinite loop"))
(loop u→)))))]))
(define (eertree-add! et a)
#| We need to find the maximum suffix-palindrome P of Ta
Start by finding maximum suffix-palindrome Q of T.
To do this, we traverse the suffix-palindromes of T
in the order of decreasing length, starting with maxSuf(T) |#
(match (eertree-get-max-suffix-pal et (eertree-max-suf-t et) a)
[(node Q.edges Q.→ Q.len)
;; We check Q to see whether it has an outgoing edge labeled by a.
(define new-node? (not (hash-has-key? Q.edges a)))
(when new-node?
(define P (new-node #f (+ Q.len 2))) ; We create the node P of length Q+2
(set-eertree-nodes! et (append (eertree-nodes et) (list P)))
(define P→
(if (= (node-len P) 1)
(eertree-rte et) ; if P = a, create the suffix link (P,0)
;; It remains to c reate the suffix link from P if |P|>1.
;; Just continue traversing suffix-palindromes of T starting with the suffix link of Q.
(hash-ref (node-edges (eertree-get-max-suffix-pal et Q.→ a)) a)))
(set-node-link! P P→)
(hash-set! Q.edges a P)) ; create the edge (Q,P)
(set-eertree-max-suf-t! et (hash-ref Q.edges a)) ; P becomes the new maxSufT
(set-eertree-S! et (append (eertree-S et) (list a))) ; Store accumulated input string
new-node?]))
(define (eertree-get-sub-palindromes et)
(define (inr nd (node-path (list nd)) (char-path/rev null))
;; Each node represents a palindrome, which can be reconstructed by the path from the root node to
;; each non-root node.
(let ((deeper ; Traverse all edges, since they represent other palindromes
(for/fold ((result null)) (([→-name nd2] (in-hash (node-edges nd))))
; The lnk-name is the character used for this edge
(append result (inr nd2 (append node-path (list nd2)) (cons →-name char-path/rev)))))
(root-node? (or (eq? (eertree-rto et) nd) (eq? (eertree-rte et) nd))))
(if root-node? ; Don't add root nodes
deeper
(let ((even-string? (eq? (car node-path) (eertree-rte et)))
(char-path (reverse char-path/rev)))
(cons (append char-path/rev (if even-string? char-path (cdr char-path))) deeper)))))
inr)
(define (eertree-get-palindromes et)
(define sub (eertree-get-sub-palindromes et))
(append (sub (eertree-rto et))
(sub (eertree-rte et))))
(module+ main
(define et (new-eertree))
;; eertree works in integer space, so we'll map to/from char space here
(for ((c "eertree")) (eertree-add! et (char->integer c)))
(map (compose list->string (curry map integer->char)) (eertree-get-palindromes et)))