RosettaCodeData/Task/Dijkstras-algorithm/Python/dijkstras-algorithm.py

51 lines
1.6 KiB
Python

from collections import namedtuple, deque
from pprint import pprint as pp
inf = float('inf')
Edge = namedtuple('Edge', ['start', 'end', 'cost'])
class Graph():
def __init__(self, edges):
self.edges = [Edge(*edge) for edge in edges]
# print(dir(self.edges[0]))
self.vertices = {e.start for e in self.edges} | {e.end for e in self.edges}
def dijkstra(self, source, dest):
assert source in self.vertices
dist = {vertex: inf for vertex in self.vertices}
previous = {vertex: None for vertex in self.vertices}
dist[source] = 0
q = self.vertices.copy()
neighbours = {vertex: set() for vertex in self.vertices}
for start, end, cost in self.edges:
neighbours[start].add((end, cost))
neighbours[end].add((start, cost))
#pp(neighbours)
while q:
# pp(q)
u = min(q, key=lambda vertex: dist[vertex])
q.remove(u)
if dist[u] == inf or u == dest:
break
for v, cost in neighbours[u]:
alt = dist[u] + cost
if alt < dist[v]: # Relax (u,v,a)
dist[v] = alt
previous[v] = u
#pp(previous)
s, u = deque(), dest
while previous[u]:
s.appendleft(u)
u = previous[u]
s.appendleft(u)
return s
graph = Graph([("a", "b", 7), ("a", "c", 9), ("a", "f", 14), ("b", "c", 10),
("b", "d", 15), ("c", "d", 11), ("c", "f", 2), ("d", "e", 6),
("e", "f", 9)])
pp(graph.dijkstra("a", "e"))