RosettaCodeData/Task/Descending-primes/Delphi/descending-primes.pas

64 lines
1.3 KiB
ObjectPascal

type TProgress = procedure(Percent: integer);
function IsPrime(N: integer): boolean;
{Optimised prime test - about 40% faster than the naive approach}
var I,Stop: integer;
begin
if (N = 2) or (N=3) then Result:=true
else if (n <= 1) or ((n mod 2) = 0) or ((n mod 3) = 0) then Result:= false
else
begin
I:=5;
Stop:=Trunc(sqrt(N));
Result:=False;
while I<=Stop do
begin
if ((N mod I) = 0) or ((N mod (i + 2)) = 0) then exit;
Inc(I,6);
end;
Result:=True;
end;
end;
function IsDescending(N: integer): boolean;
{Determine if each digit is less than previous, left to right}
var S: string;
var I: integer;
begin
Result:=False;
S:=IntToStr(N);
for I:=1 to Length(S)-1 do
if S[I]<=S[I+1] then exit;
Result:=True;
end;
procedure ShowDescendingPrimes(Memo: TMemo; Prog: TProgress);
{Write Descending primes up to 123,456,789 }
{The Optional progress }
var I,Cnt: integer;
var S: string;
const Max = 123456789;
begin
if Assigned(Prog) then Prog(0);
S:='';
Cnt:=0;
for I:=2 to Max do
begin
if ((I mod 1000000)=0) and Assigned(Prog) then Prog(Trunc(100*(I/Max)));
if IsDescending(I) and IsPrime(I) then
begin
S:=S+Format('%12.0n', [I*1.0]);
Inc(Cnt);
if (Cnt mod 8)=0 then
begin
Memo.Lines.Add(S);
S:='';
end;
end;
end;
if S<>'' then Memo.Lines.Add(S);
Memo.Lines.Add('Descending Primes Found: '+IntToStr(Cnt));
end;