RosettaCodeData/Task/Deconvolution-2D+/Python/deconvolution-2d+.py

131 lines
3.0 KiB
Python

"""
https://rosettacode.org/wiki/Deconvolution/2D%2B
Working on 3 dimensional example using test data from the
RC task.
Python fft:
https://docs.scipy.org/doc/numpy/reference/routines.fft.html
"""
import numpy
import pprint
h = [
[[-6, -8, -5, 9], [-7, 9, -6, -8], [2, -7, 9, 8]],
[[7, 4, 4, -6], [9, 9, 4, -4], [-3, 7, -2, -3]]]
f = [
[[-9, 5, -8], [3, 5, 1]],
[[-1, -7, 2], [-5, -6, 6]],
[[8, 5, 8],[-2, -6, -4]]]
g = [
[
[54, 42, 53, -42, 85, -72],
[45, -170, 94, -36, 48, 73],
[-39, 65, -112, -16, -78, -72],
[6, -11, -6, 62, 49, 8]],
[
[-57, 49, -23, 52, -135, 66],
[-23, 127, -58, -5, -118, 64],
[87, -16, 121, 23, -41, -12],
[-19, 29, 35, -148, -11, 45]],
[
[-55, -147, -146, -31, 55, 60],
[-88, -45, -28, 46, -26, -144],
[-12, -107, -34, 150, 249, 66],
[11, -15, -34, 27, -78, -50]],
[
[56, 67, 108, 4, 2, -48],
[58, 67, 89, 32, 32, -8],
[-42, -31, -103, -30, -23, -8],
[6, 4, -26, -10, 26, 12]]]
def trim_zero_empty(x):
"""
Takes a structure that represents an n dimensional example.
For a 2 dimensional example it will be a list of lists.
For a 3 dimensional one it will be a list of list of lists.
etc.
Actually these are multidimensional numpy arrays but I was thinking
in terms of lists.
Returns the same structure without trailing zeros in the inner
lists and leaves out inner lists with all zeros.
"""
if len(x) > 0:
if type(x[0]) != numpy.ndarray:
# x is 1d array
return list(numpy.trim_zeros(x))
else:
# x is a multidimentional array
new_x = []
for l in x:
tl = trim_zero_empty(l)
if len(tl) > 0:
new_x.append(tl)
return new_x
else:
# x is empty list
return x
def deconv(a, b):
"""
Returns function c such that b * c = a.
https://en.wikipedia.org/wiki/Deconvolution
"""
# Convert larger polynomial using fft
ffta = numpy.fft.fftn(a)
# Get it's shape so fftn will expand
# smaller polynomial to fit.
ashape = numpy.shape(a)
# Convert smaller polynomial with fft
# using the shape of the larger one
fftb = numpy.fft.fftn(b,ashape)
# Divide the two in frequency domain
fftquotient = ffta / fftb
# Convert back to polynomial coefficients using ifft
# Should give c but with some small extra components
c = numpy.fft.ifftn(fftquotient)
# Get rid of imaginary part and round up to 6 decimals
# to get rid of small real components
trimmedc = numpy.around(numpy.real(c),decimals=6)
# Trim zeros and eliminate
# empty rows of coefficients
cleanc = trim_zero_empty(trimmedc)
return cleanc
print("deconv(g,h)=")
pprint.pprint(deconv(g,h))
print(" ")
print("deconv(g,f)=")
pprint.pprint(deconv(g,f))