RosettaCodeData/Task/Closest-pair-problem/Mathematica/closest-pair-problem-3.math

42 lines
1.6 KiB
Plaintext

closestPair[ptsIn_] :=
Module[{xP, yP,
pts},(*Top level function.Sorts the pts by x and by y and then \
calls closestPairR[]*)pts = N[ptsIn];
xP = Sort[pts, #1[[1]] < #2[[1]] &];
yP = Sort[pts, #1[[2]] < #2[[2]] &];
closestPairR[xP, yP]]
closestPairR[xP_, yP_] :=
Module[{n, mid, xL, xR, xm, yL, yR, dL, pairL, dmin, pairMin, yS, nS,
closest, closestP, k,
cDist},(*where xP is P(1).. P(n) sorted by x coordinate,
and yP is P(1).. P(n) sorted by y coordinate (ascending order)*)
n = Length[xP];
If[n <= 3,(*Brute Force*)
Piecewise[{{{\[Infinity], {}},
n < 2}, {{EuclideanDistance[xP[[1]], xP[[2]]], {xP[[1]],
xP[[2]]}},
n == 2}, {Last@
MinimalBy[{{EuclideanDistance[xP[[1]], xP[[2]]], {xP[[1]],
xP[[2]]}}, {EuclideanDistance[xP[[1]], xP[[3]]], {xP[[1]],
xP[[3]]}}, {EuclideanDistance[xP[[3]], xP[[2]]], {xP[[3]],
xP[[2]]}}}, First], n == 3}}], mid = Ceiling[n/2];
xL = xP[[1 ;; mid]];
xR = xP[[mid + 1 ;; n]];
xm = xP[[mid]];
yL = Select[yP, #[[1]] <= xm[[1]] &];
yR = Select[yP, #[[1]] > xm[[1]] &];
{dL, pairL} = closestPairR[xL, yL];
{dmin, pairMin} = closestPairR[xR, yR];
If[dL < dmin, {dmin, pairMin} = {dL, pairL}];
yS = Select[yP, Abs[#[[1]] - xm[[1]]] <= dmin &];
nS = Length[yS];
{closest, closestP} = {dmin, pairMin};
Table[k = i + 1;
While[(k <= nS) && (yS[[k, 2]] - yS[[i, 2]] < dmin),
cDist = EuclideanDistance[yS[[k]], yS[[i]]];
If[cDist <
closest, {closest, closestP} = {cDist, {yS[[k]], yS[[i]]}}];
k = k + 1], {i, 1, nS - 1}];
{closest, closestP}](*end if*)]