47 lines
975 B
Java
47 lines
975 B
Java
import static java.util.Arrays.stream;
|
|
|
|
public class ChineseRemainderTheorem {
|
|
|
|
public static int chineseRemainder(int[] n, int[] a) {
|
|
|
|
int prod = stream(n).reduce(1, (i, j) -> i * j);
|
|
|
|
int p, sm = 0;
|
|
for (int i = 0; i < n.length; i++) {
|
|
p = prod / n[i];
|
|
sm += a[i] * mulInv(p, n[i]) * p;
|
|
}
|
|
return sm % prod;
|
|
}
|
|
|
|
private static int mulInv(int a, int b) {
|
|
int b0 = b;
|
|
int x0 = 0;
|
|
int x1 = 1;
|
|
|
|
if (b == 1)
|
|
return 1;
|
|
|
|
while (a > 1) {
|
|
int q = a / b;
|
|
int amb = a % b;
|
|
a = b;
|
|
b = amb;
|
|
int xqx = x1 - q * x0;
|
|
x1 = x0;
|
|
x0 = xqx;
|
|
}
|
|
|
|
if (x1 < 0)
|
|
x1 += b0;
|
|
|
|
return x1;
|
|
}
|
|
|
|
public static void main(String[] args) {
|
|
int[] n = {3, 5, 7};
|
|
int[] a = {2, 3, 2};
|
|
System.out.println(chineseRemainder(n, a));
|
|
}
|
|
}
|