RosettaCodeData/Task/Average-loop-length/Rust/average-loop-length.rs

75 lines
2.1 KiB
Rust

extern crate rand;
use rand::{ThreadRng, thread_rng};
use rand::distributions::{IndependentSample, Range};
use std::collections::HashSet;
use std::env;
use std::process;
fn help() {
println!("usage: average_loop_length <max_N> <trials>");
}
fn main() {
let args: Vec<String> = env::args().collect();
let mut max_n: u32 = 20;
let mut trials: u32 = 1000;
match args.len() {
1 => {}
3 => {
max_n = args[1].parse::<u32>().unwrap();
trials = args[2].parse::<u32>().unwrap();
}
_ => {
help();
process::exit(0);
}
}
let mut rng = thread_rng();
println!(" N average analytical (error)");
println!("=== ========= ============ =========");
for n in 1..(max_n + 1) {
let the_analytical = analytical(n);
let the_empirical = empirical(n, trials, &mut rng);
println!(" {:>2} {:3.4} {:3.4} ( {:>+1.2}%)",
n,
the_empirical,
the_analytical,
100f64 * (the_empirical / the_analytical - 1f64));
}
}
fn factorial(n: u32) -> f64 {
(1..n + 1).fold(1f64, |p, n| p * n as f64)
}
fn analytical(n: u32) -> f64 {
let sum: f64 = (1..(n + 1))
.map(|i| factorial(n) / (n as f64).powi(i as i32) / factorial(n - i))
.fold(0f64, |a, v| a + v);
sum
}
fn empirical(n: u32, trials: u32, rng: &mut ThreadRng) -> f64 {
let sum: f64 = (0..trials)
.map(|_t| {
let mut item = 1u32;
let mut seen = HashSet::new();
let range = Range::new(1u32, n + 1);
for step in 0..n {
if seen.contains(&item) {
return step as f64;
}
seen.insert(item);
item = range.ind_sample(rng);
}
n as f64
})
.fold(0f64, |a, v| a + v);
sum / trials as f64
}