RosettaCodeData/Task/Arithmetic-Rational/Jq/arithmetic-rational-1.jq

186 lines
5.4 KiB
Plaintext

# a and b are assumed to be non-zero integers
def gcd(a; b):
# subfunction expects [a,b] as input
# i.e. a ~ .[0] and b ~ .[1]
def rgcd: if .[1] == 0 then .[0]
else [.[1], .[0] % .[1]] | rgcd
end;
[a,b] | rgcd;
# To take advantage of gojq's support for accurate integer division:
def idivide($j):
. as $i
| ($i % $j) as $mod
| ($i - $mod) / $j ;
# To take advantage of gojq's arbitrary-precision integer arithmetic:
def power($b): . as $in | reduce range(0;$b) as $i (1; . * $in);
# $p should be an integer or a rational
# $q should be a non-zero integer or a rational
# Output: a Rational: $p // $q
def r($p;$q):
def r: if type == "number" then {n: ., d: 1} else . end;
# The remaining subfunctions assume all args are Rational
def n: if .d < 0 then {n: -.n, d: -.d} else . end;
def rdiv($a;$b):
($a.d * $b.n) as $denom
| if $denom==0 then "r: division by 0" | error
else r($a.n * $b.d; $denom)
end;
if $q == 1 and ($p|type) == "number" then {n: $p, d: 1}
elif $q == 0 then "r: denominator cannot be 0" | error
else if ($p|type == "number") and ($q|type == "number")
then gcd($p;$q) as $g
| {n: ($p/$g), d: ($q/$g)} | n
else rdiv($p|r; $q|r)
end
end;
# Polymorphic (integers and rationals in general)
def requal($a; $b):
if $a | type == "number" and $b | type == "number" then $a == $b
else r($a;1) == r($b;1)
end;
# Input: a Rational
# Output: a Rational with a denominator that has no more than $digits digits
# and such that |rBefore - rAfter| < 1/(10|power($digits)
# where $digits should be a positive integer.
def rround($digits):
if .d | length > $digits
then (10|power($digits)) as $p
| .d as $d
| r($p * .n | idivide($d); $p)
else . end;
# Polymorphic; see also radd/0
def radd($a; $b):
def r: if type == "number" then {n: ., d: 1} else . end;
($a|r) as {n: $na, d: $da}
| ($b|r) as {n: $nb, d: $db}
| r( ($na * $db) + ($nb * $da); $da * $db );
# Polymorphic; see also rmult/0
def rmult($a; $b):
def r: if type == "number" then {n: ., d: 1} else . end;
($a|r) as {n: $na, d: $da}
| ($b|r) as {n: $nb, d: $db}
| r( $na * $nb; $da * $db ) ;
# Input: an array of rationals (integers and/or Rationals)
# Output: a Rational computed using left-associativity
def rmult:
if length == 0 then r(1;1)
elif length == 1 then r(.[0]; 1) # ensure the result is Rational
else .[0] as $first
| reduce .[1:][] as $x ($first; rmult(.; $x))
end;
# Input: an array of rationals (integers and/or Rationals)
# Output: a Rational computed using left-associativity
def radd:
if length == 0 then r(0;1)
elif length == 1 then r(.[0]; 1) # ensure the result is Rational
else .[0] as $first
| reduce .[1:][] as $x ($first; radd(. ; $x))
end;
def rabs: r(.;1) | r(.n|length; .d|length);
def rminus: r(-1 * .n; .d);
def rminus($a; $b): radd($a; rmult(-1; $b));
# Note that rinv does not check for division by 0
def rinv: r(1; .);
def rdiv($a; $b): r($a; $b);
# Input: an integer or a Rational, $p
# Output: $p < $q
def rlessthan($q):
# lt($b) assumes . and $b have the same sign
def lt($b):
. as $a
| ($a.n * $b.d) < ($b.n * $a.d);
if $q|type == "number" then rlessthan(r($q;1))
else if type == "number" then r(.;1) else . end
| if .n < 0
then if ($q.n >= 0) then true
else . as $p | ($q|rminus | rlessthan($p|rminus))
end
else lt($q)
end
end;
def rgreaterthan($q):
. as $p | $q | rlessthan($p);
def rlessthanOrEqual($q): requal(.;$q) or rlessthan($q);
def rgreaterthanOrEqual($q): requal(.;$q) or rgreaterthan($q);
# Input: non-negative integer or Rational
def rsqrt(precision):
r(.;1) as $n
| (precision + 1) as $digits
| def update: rmult( r(1;2); radd(.x; rdiv($n; .x))) | rround($digits);
| def update: rmult( r(1;2); radd(.x; rdiv($n; .x)));
r(1; 10|power(precision)) as $p
| { x: .}
| .root = update
| until( rminus(.root; .x) | rabs | rlessthan($p);
.x = .root
| .root = update )
| .root ;
# Use native floats
# q.v. r_to_decimal(precision)
def r_to_decimal: .n / .d;
# Input: a Rational, or {n, d} in general, or an integer.
# Output: a string representation of the input as a decimal number.
# If the input is a number, it is simply converted to a string.
# Otherwise, $precision determines the number of digits after the decimal point,
# obtained by truncating, but trailing 0s are omitted.
# Examples assuming $digits is 5:
# -0//1 => "0"
# 2//1 => "2"
# 1//2 => "0.5"
# 1//3 => "0.33333"
# 7//9 => "0.77777"
# 1//100 => "0.01"
# -1//10 => "-0.1"
# 1//1000000 => "0."
def r_to_decimal($digits):
if .n == 0 # captures the annoying case of -0
then "0"
elif type == "number" then tostring
elif .d < 0 then {n: -.n, d: -.d}|r_to_decimal($digits)
elif .n < 0
then "-" + ((.n = -.n) | r_to_decimal($digits))
else (10|power($digits)) as $p
| .d as $d
| if $d == 1 then .n|tostring
else ($p * .n | idivide($d) | tostring) as $n
| ($n|length) as $nlength
| (if $nlength > $digits then $n[0:$nlength-$digits] + "." + $n[$nlength-$digits:]
else "0." + ("0"*($digits - $nlength) + $n)
end) | sub("0+$";"")
end
end;
# Assume . is an integer or in canonical form
def rfloor:
if type == "number" then r(.;1)
elif 0 == .n or (0 < .n and .n < .d) then r(0;1)
elif 0 < .n or (.n % .d == 0) then .d as $d | r(.n | idivide($d); 1)
else rminus( r( - .n; .d) | rfloor | rminus; 1)
end;
# pretty print ala Julia
def rpp: "\(.n) // \(.d)";