RosettaCodeData/Task/Arithmetic-Complex/Jq/arithmetic-complex-1.jq

65 lines
1.6 KiB
Plaintext

def real(z): if (z|type) == "number" then z else z[0] end;
def imag(z): if (z|type) == "number" then 0 else z[1] end;
def plus(x; y):
if (x|type) == "number" then
if (y|type) == "number" then [ x+y, 0 ]
else [ x + y[0], y[1]]
end
elif (y|type) == "number" then plus(y;x)
else [ x[0] + y[0], x[1] + y[1] ]
end;
def multiply(x; y):
if (x|type) == "number" then
if (y|type) == "number" then [ x*y, 0 ]
else [x * y[0], x * y[1]]
end
elif (y|type) == "number" then multiply(y;x)
else [ x[0] * y[0] - x[1] * y[1],
x[0] * y[1] + x[1] * y[0]]
end;
def multiply: reduce .[] as $x (1; multiply(.; $x));
def negate(x): multiply(-1; x);
def minus(x; y): plus(x; multiply(-1; y));
def conjugate(z):
if (z|type) == "number" then [z, 0]
else [z[0], -(z[1]) ]
end;
def invert(z):
if (z|type) == "number" then [1/z, 0]
else
( (z[0] * z[0]) + (z[1] * z[1]) ) as $d
# use "0 + ." to convert -0 back to 0
| [ z[0]/$d, (0 + -(z[1]) / $d)]
end;
def divide(x;y): multiply(x; invert(y));
def exp(z):
def expi(x): [ (x|cos), (x|sin) ];
if (z|type) == "number" then z|exp
elif z[0] == 0 then expi(z[1]) # for efficiency
else multiply( (z[0]|exp); expi(z[1]) )
end ;
def test(x;y):
"x = \( x )",
"y = \( y )",
"x+y: \( plus(x;y))",
"x*y: \( multiply(x;y))",
"-x: \( negate(x))",
"1/x: \( invert(x))",
"conj(x): \( conjugate(x))",
"(x/y)*y: \( multiply( divide(x;y) ; y) )",
"e^iπ: \( exp( [0, 4 * (1|atan) ] ) )"
;
test( [1,1]; [0,1] )