RosettaCodeData/Task/Animate-a-pendulum/RLaB/animate-a-pendulum.rlab

60 lines
2.4 KiB
Plaintext

//
// example: solve ODE for pendulum
//
// we first define the first derivative function for the solver
dudt = function(t, u, p)
{
// t-> time
// u->[theta, dtheta/dt ]
// p-> g/L, parameter
rval = zeros(2,1);
rval[1] = u[2];
rval[2] = -p[1] * sin(u[1]);
return rval;
};
// now we solve the problem
// physical parameters
L = 5; // (m), the length of the arm of the pendulum
p = mks.g / L; // RLaB has a built-in list 'mks' which contains large number of physical constants and conversion factors
T0 = 2*const.pi*sqrt(L/mks.g); // approximate period of the pendulum
// initial conditions
theta0 = 30; // degrees, initial angle of deflection of pendulum
u0 = [theta0*const.pi/180, 0]; // RLaB has a built-in list 'const' of mathematical constants.
// times at which we want solution
t = [0:4:1/64] * T0; // solve for 4 approximate periods with at time points spaced at T0/64
// prepare ODEIV solver
optsode = <<>>;
optsode.eabs = 1e-6; // relative error for step size
optsode.erel = 1e-6; // absolute error for step size
optsode.delta_t = 1e-6; // maximum dt that code is allowed
optsode.stdout = stderr(); // open the text console and in it print the results of each step of calculation
optsode.imethod = 5; // use method No. 5 from the odeiv toolkit, Runge-Kutta 8th order Prince-Dormand method
//optsode.phase_space = 0; // the solver returns [t, u1(t), u2(t)] which is default behavior
optsode.phase_space = 1; // the solver returns [t, u1(t), u2(t), d(u1)/dt(t), d(u2)/dt]
// solver do my bidding
y = odeiv(dudt, p, t, u0, optsode);
// Make an animation. We choose to use 'pgplot' rather then 'gnuplot' interface because the former is
// faster and thus less cache-demanding, while the latter can be very cache-demanding (it may slow your
// linux system quite down if one sends lots of plots for gnuplot to plot).
plwins (1); // we will use one pgplot-window
plwin(1); // plot to pgplot-window No. 1; necessary if using more than one pgplot window
plimits (-L,L, -1.25*L, 0.25*L);
xlabel ("x-coordinate");
ylabel ("z-coordinate");
plegend ("Arm");
for (i in 1:y.nr)
{
// plot a line between the pivot point at (0,0) and the current position of the pendulum
arm_line = [0,0; L*sin(y[i;2]), -L*cos(y[i;2])]; // this is because theta is between the arm and the z-coordinate
plot (arm_line);
sleep (0.1); // sleep 0.1 seconds between plots
}