RosettaCodeData/Task/AVL-tree/Component-Pascal/avl-tree-1.pas

197 lines
5.9 KiB
ObjectPascal

MODULE RosettaAVLTrees;
(* An implementation of persistent AVL Trees *)
TYPE
Order = ABSTRACT RECORD END;
Tree* = POINTER TO Node;
Node* = ABSTRACT RECORD (Order)
left, right: Tree;
height: INTEGER
END; (* Contains the left and right child nodes and the height of the node *)
Out* = ABSTRACT RECORD END; (* Used for output by the `Draw` procedure *)
Void = RECORD (Order) END; (* Used by the `Ordered` procedure *)
(* The following abstract procedures must be implemented by a user of `Node` *)
(* They must be implemented correctly for the AVL tree to work *)
(* Compares one node with another and returns a boolean value based on which is less *)
PROCEDURE (IN n: Order) Less- (IN m: Node): BOOLEAN, NEW, ABSTRACT;
(* Compares one node with another and returns a boolean value based on which is more *)
PROCEDURE (IN n: Order) More- (IN m: Node): BOOLEAN, NEW, ABSTRACT;
(* Creates a new root node *)
PROCEDURE (IN n: Node) Alloc- (): Tree, NEW, ABSTRACT;
(* Returns TRUE if n is in the tree t, FALSE otherwise *)
PROCEDURE (IN n: Node) Lookup* (t: Tree): BOOLEAN, NEW;
BEGIN
IF t = NIL THEN RETURN FALSE END;
IF n.Less(t) THEN RETURN n.Lookup(t.left) END;
IF n.More(t) THEN RETURN n.Lookup(t.right) END;
RETURN TRUE
END Lookup;
(* Returns the height of the AVL tree t *)
PROCEDURE Height (t: Tree): INTEGER;
BEGIN
IF t = NIL THEN RETURN 0 END;
RETURN t.height
END Height;
(* Creates and returns a new Node with the given children *)
PROCEDURE (IN n: Node) New (left, right: Tree): Tree, NEW;
VAR t: Tree;
BEGIN
t := n.Alloc(); (* Create a new root node *)
t.left := left; t.right := right; (* set the children *)
(* set the height of the node based on its children *)
t.height := MAX(Height(left), Height(right)) + 1;
RETURN t
END New;
(* Returns the difference in height between the left and right children of a node *)
PROCEDURE Slope (l, r: Tree): INTEGER;
BEGIN RETURN Height(l) - Height(r) END Slope;
(* Returns an AVL tree if it is right-heavy *)
PROCEDURE (IN n: Node) BalL (l, r: Tree): Tree, NEW;
BEGIN
IF Slope(l, r) = - 2 THEN
IF Slope(r.left, r.right) = 1 THEN
RETURN r.left.New(n.New(l, r.left.left),
r.New(r.left.right, r.right))
END;
RETURN r.New(n.New(l, r.left), r.right)
END;
RETURN n.New(l, r)
END BalL;
(* Returns an AVL tree if it is left-heavy *)
PROCEDURE (IN n: Node) BalR (l, r: Tree): Tree, NEW;
BEGIN
IF Slope(l, r) = 2 THEN
IF Slope(l.left, l.right) = - 1 THEN
RETURN l.right.New(l.New(l.left, l.right.left),
n.New(l.right.right, r))
END;
RETURN l.New(l.left, n.New(l.right, r))
END;
RETURN n.New(l, r)
END BalR;
(* Returns the AVL tree t with the node n *)
PROCEDURE (IN n: Node) Insert* (t: Tree): Tree, NEW;
BEGIN
IF t = NIL THEN RETURN n.New(NIL, NIL) END;
IF n.Less(t) THEN RETURN t.BalR(n.Insert(t.left), t.right) END;
IF n.More(t) THEN RETURN t.BalL(t.left, n.Insert(t.right)) END;
RETURN t
END Insert;
(* Returns the leftmost node of the non-empty tree t *)
PROCEDURE (t: Tree) Head (): Tree, NEW;
BEGIN
IF t.left = NIL THEN RETURN t END;
RETURN t.left.Head()
END Head;
(* Returns the rightmost node of the non-empty tree t *)
PROCEDURE (t: Tree) Last (): Tree, NEW;
BEGIN
IF t.right = NIL THEN RETURN t END;
RETURN t.right.Last()
END Last;
(* Returns the AVL tree t without the leftmost node *)
PROCEDURE (IN t: Node) Tail* (): Tree, NEW;
BEGIN
IF t.left = NIL THEN RETURN t.right END;
RETURN t.BalL(t.left.Tail(), t.right)
END Tail;
(* Returns the AVL tree t without the rightmost node *)
PROCEDURE (IN t: Node) Init* (): Tree, NEW;
BEGIN
IF t.right = NIL THEN RETURN t.left END;
RETURN t.BalR(t.left, t.right.Init())
END Init;
(* Returns the AVL tree t without node n *)
PROCEDURE (IN n: Node) Delete* (t: Tree): Tree, NEW;
BEGIN
IF t = NIL THEN RETURN NIL END;
IF n.Less(t) THEN RETURN t.BalL(n.Delete(t.left), t.right) END;
IF n.More(t) THEN RETURN t.BalR(t.left, n.Delete(t.right)) END;
IF Slope(t.left, t.right) = 1 THEN
RETURN t.left.Last().BalL(t.left.Init(), t.right)
END;
IF t.right = NIL THEN RETURN t.left END;
RETURN t.right.Head().BalR(t.left, t.right.Tail())
END Delete;
(* The following procedures are used for debugging *)
PROCEDURE (IN n: Void) Less- (IN m: Node): BOOLEAN;
BEGIN RETURN TRUE END Less;
PROCEDURE (IN n: Void) More- (IN m: Node): BOOLEAN;
BEGIN RETURN TRUE END More;
(* Returns TRUE if the AVL tree t is ordered, FALSE otherwise *)
PROCEDURE Ordered* (t: Tree): BOOLEAN;
VAR void: Void;
PROCEDURE Bounded (IN lo, hi: Order; t: Tree): BOOLEAN;
BEGIN
IF t = NIL THEN RETURN TRUE END;
RETURN lo.Less(t) & hi.More(t) &
Bounded(lo, t, t.left) & Bounded(t, hi, t.right)
END Bounded;
BEGIN RETURN Bounded(void, void, t) END Ordered;
(* The following abstract procedures must be implemented by a user of `Out` *)
(* Writes a string *)
PROCEDURE (IN o: Out) Str- (s: ARRAY OF CHAR), NEW, ABSTRACT;
(* Writes an integer *)
PROCEDURE (IN o: Out) Int- (i: INTEGER), NEW, ABSTRACT;
(* Writes a new-line *)
PROCEDURE (IN o: Out) Ln-, NEW, ABSTRACT;
(* Writes a node *)
PROCEDURE (IN o: Out) Node- (IN n: Node), NEW, ABSTRACT;
(* Writes a tree (rotated) *)
PROCEDURE (IN o: Out) Draw* (t: Tree), NEW;
PROCEDURE Bars (bars, bar: ARRAY OF CHAR);
BEGIN
IF LEN(bars + bar) # 0 THEN o.Str(bars + "+--") END
END Bars;
PROCEDURE Do (lBar, rBar, bars: ARRAY OF CHAR; t: Tree);
BEGIN
IF t = NIL THEN Bars(bars, lBar); o.Str("|"); o.Ln
ELSIF (t.left = NIL) & (t.right = NIL) THEN
Bars(bars, lBar); o.Node(t); o.Ln
ELSE
Do("| ", " ", bars + rBar, t.right);
o.Str(bars + rBar + "|"); o.Ln;
Bars(bars, lBar); o.Node(t);
IF Slope(t.left, t.right) # 0 THEN
o.Str(" ["); o.Int(Slope(t.left, t.right)); o.Str("]")
END;
o.Ln;
o.Str(bars + lBar + "|"); o.Ln;
Do(" ", "| ", bars + lBar, t.left)
END
END Do;
BEGIN
Do("", "", "", t)
END Draw;
END RosettaAVLTrees.