RosettaCodeData/Task/Evolutionary-algorithm/MATLAB/evolutionary-algorithm-3.m

111 lines
5.2 KiB
Matlab

%% Genetic Algorithm -- Solves For A User Input String
% #### PLEASE NOTE: you can change the selection and crossover type in the
% parameters and see how the algorithm changes. ####
clear;close all;clc; %Clears variables, closes windows, and clears the command window
tic % Begins the timer
%% Select Target String
target = 'METHINKS IT IS LIKE A WEASEL';
% *Can Be Any String With Any Values and Any Length!*
% but for this example we use 'METHINKS IT IS LIKE A WEASEL'
%% Parameters
popSize = 1000; % Population Size (100-10000 generally produce good results)
genome = length(target); % Genome Size
mutRate = .01; % Mutation Rate (5%-25% produce good results)
S = 4; % Tournament Size (2-6 produce good results)
best = Inf; % Initialize Best (arbitrarily large)
MaxVal = max(double(target)); % Max Integer Value Needed
ideal = double(target); % Convert Target to Integers
selection = 0; % 0: Tournament
% 1: 50% Truncation
crossover = 1; % 0: Uniform crossover
% 1: 1 point crossover
% 2: 2 point crossover
%% Initialize Population
Pop = round(rand(popSize,genome)*(MaxVal-1)+1); % Creates Population With Corrected Genome Length
for Gen = 1:1e6 % A Very Large Number Was Chosen, But Shouldn't Be Needed
%% Fitness
% The fitness function starts by converting the characters into integers and then
% subtracting each element of each member of the population from each element of
% the target string. The function then takes the absolute value of
% the differences and sums each row and stores the function as a mx1 matrix.
F = sum(abs(bsxfun(@minus,Pop,ideal)),2);
% Finding Best Members for Score Keeping and Printing Reasons
[current,currentGenome] = min(F); % current is the minimum value of the fitness array F
% currentGenome is the index of that value in the F array
% Stores New Best Values and Prints New Best Scores
if current < best
best = current;
bestGenome = Pop(currentGenome,:); % Uses that index to find best value
fprintf('Gen: %d | Fitness: %d | ',Gen, best); % Formatted printing of generation and fitness
disp(char(bestGenome)); % Best genome so far
elseif best == 0
break % Stops program when we are done
end
%% Selection
% TOURNAMENT
if selection == 0
T = round(rand(2*popSize,S)*(popSize-1)+1); % Tournaments
[~,idx] = min(F(T),[],2); % Index to Determine Winners
W = T(sub2ind(size(T),(1:2*popSize)',idx)); % Winners
% 50% TRUNCATION
elseif selection == 1
[~,V] = sort(F,'descend'); % Sort Fitness in Ascending Order
V = V(popSize/2+1:end); % Winner Pool
W = V(round(rand(2*popSize,1)*(popSize/2-1)+1))'; % Winners
end
%% Crossover
% UNIFORM CROSSOVER
if crossover == 0
idx = logical(round(rand(size(Pop)))); % Index of Genome from Winner 2
Pop2 = Pop(W(1:2:end),:); % Set Pop2 = Pop Winners 1
P2A = Pop(W(2:2:end),:); % Assemble Pop2 Winners 2
Pop2(idx) = P2A(idx); % Combine Winners 1 and 2
% 1-POINT CROSSOVER
elseif crossover == 1
Pop2 = Pop(W(1:2:end),:); % New Population From Pop 1 Winners
P2A = Pop(W(2:2:end),:); % Assemble the New Population
Ref = ones(popSize,1)*(1:genome); % The Reference Matrix
idx = (round(rand(popSize,1)*(genome-1)+1)*ones(1,genome))>Ref; % Logical Indexing
Pop2(idx) = P2A(idx); % Recombine Both Parts of Winners
% 2-POINT CROSSOVER
elseif crossover == 2
Pop2 = Pop(W(1:2:end),:); % New Pop is Winners of old Pop
P2A = Pop(W(2:2:end),:); % Assemble Pop2 Winners 2
Ref = ones(popSize,1)*(1:genome); % Ones Matrix
CP = sort(round(rand(popSize,2)*(genome-1)+1),2); % Crossover Points
idx = CP(:,1)*ones(1,genome)<Ref&CP(:,2)*ones(1,genome)>Ref; % Index
Pop2(idx)=P2A(idx); % Recombine Winners
end
%% Mutation
idx = rand(size(Pop2))<mutRate; % Index of Mutations
Pop2(idx) = round(rand([1,sum(sum(idx))])*(MaxVal-1)+1); % Mutated Value
%% Reset Poplulations
Pop = Pop2;
end
toc % Ends timer and prints elapsed time