// version 1.1.2 val rand = java.util.Random() fun basicStats(sampleSize: Int) { if (sampleSize < 1) return val r = DoubleArray(sampleSize) val h = IntArray(10) // all zero by default /* Generate 'sampleSize' random numbers in the interval [0, 1) and calculate in which box they will fall when drawing the histogram */ for (i in 0 until sampleSize) { r[i] = rand.nextDouble() h[(r[i] * 10).toInt()]++ } // adjust one of the h[] values if necessary to ensure they sum to sampleSize val adj = sampleSize - h.sum() if (adj != 0) { for (i in 0..9) { h[i] += adj if (h[i] >= 0) break h[i] -= adj } } val mean = r.average() val sd = Math.sqrt(r.map { (it - mean) * (it - mean) }.average()) // Draw a histogram of the data with interval 0.1 var numStars: Int // If sample size > 500 then normalize histogram to 500 val scale = if (sampleSize <= 500) 1.0 else 500.0 / sampleSize println("Sample size $sampleSize\n") println(" Mean ${"%1.6f".format(mean)} SD ${"%1.6f".format(sd)}\n") for (i in 0..9) { print(" %1.2f : ".format(i / 10.0)) print("%5d ".format(h[i])) numStars = (h[i] * scale + 0.5).toInt() println("*".repeat(numStars)) } println() } fun main(args: Array) { val sampleSizes = intArrayOf(100, 1_000, 10_000, 100_000) for (sampleSize in sampleSizes) basicStats(sampleSize) }