Imports System Imports System.Collections.Generic Imports BI = System.Numerics.BigInteger Module Module1 ' A sparse array of values calculated along the way Dim sl As SortedList(Of Integer, BI) = New SortedList(Of Integer, BI)() ' Square a BigInteger Function sqr(ByVal n As BI) As BI Return n * n End Function ' Helper routine for Fsl(). It adds an entry to the sorted list when necessary Sub IfNec(n As Integer) If Not sl.ContainsKey(n) Then sl.Add(n, Fsl(n)) End Sub ' This routine is semi-recursive, but doesn't need to evaluate every number up to n. ' Algorithm from here: http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html#section3 Function Fsl(ByVal n As Integer) As BI If n < 2 Then Return n Dim n2 As Integer = n >> 1, pm As Integer = n2 + ((n And 1) << 1) - 1 : IfNec(n2) : IfNec(pm) Return If(n2 > pm, (2 * sl(pm) + sl(n2)) * sl(n2), sqr(sl(n2)) + sqr(sl(pm))) End Function ' Conventional iteration method (not used here) Function Fm(ByVal n As BI) As BI If n < 2 Then Return n Dim cur As BI = 0, pre As BI = 1 For i As Integer = 0 To n - 1 Dim sum As BI = cur + pre : pre = cur : cur = sum : Next : Return cur End Function Sub Main() Dim vlen As Integer, num As Integer = 2_000_000, digs As Integer = 35 Dim sw As System.Diagnostics.Stopwatch = System.Diagnostics.Stopwatch.StartNew() Dim v As BI = Fsl(num) : sw.[Stop]() Console.Write("{0:n3} ms to calculate the {1:n0}th Fibonacci number, ", sw.Elapsed.TotalMilliseconds, num) vlen = CInt(Math.Ceiling(BI.Log10(v))) : Console.WriteLine("number of digits is {0}", vlen) If vlen < 10000 Then sw.Restart() : Console.WriteLine(v) : sw.[Stop]() Console.WriteLine("{0:n3} ms to write it to the console.", sw.Elapsed.TotalMilliseconds) Else Console.Write("partial: {0}...{1}", v / BI.Pow(10, vlen - digs), v Mod BI.Pow(10, digs)) End If End Sub End Module