/* ARM assembly Raspberry PI */ /* program babbage.s */ /************************************/ /* Constantes */ /************************************/ .equ STDOUT, 1 @ Linux output console .equ EXIT, 1 @ Linux syscall .equ WRITE, 4 @ Linux syscall /*********************************/ /* Initialized data */ /*********************************/ .data sMessResult: .ascii "Result = " sMessValeur: .fill 11, 1, ' ' @ size => 11 szCarriageReturn: .asciz "\n" /*********************************/ /* UnInitialized data */ /*********************************/ .bss /*********************************/ /* code section */ /*********************************/ .text .global main main: @ entry of program ldr r4,iNbStart @ start number = 269696 mov r5,#0 @ counter multiply ldr r2,iNbMult @ value multiply = 1 000 000 mov r6,r4 1: mov r0,r6 bl squareRoot @ compute square root umull r1,r3,r0,r0 cmp r3,#0 @ overflow ? bne 100f @ yes -> end cmp r1,r6 @ perfect square bne 2f @ no -> loop ldr r1,iAdrsMessValeur bl conversion10 @ call conversion decimal ldr r0,iAdrsMessResult bl affichageMess @ display message b 100f @ end 2: add r5,#1 @ increment counter mul r3,r5,r2 @ multiply by 1 000 000 add r6,r3,r4 @ add start number b 1b 100: @ standard end of the program mov r0, #0 @ return code mov r7, #EXIT @ request to exit program svc #0 @ perform the system call iAdrsMessValeur: .int sMessValeur iAdrszCarriageReturn: .int szCarriageReturn iAdrsMessResult: .int sMessResult iNbStart: .int 269696 iNbMult: .int 1000000 /******************************************************************/ /* compute squareRoot */ /******************************************************************/ /* r0 contains n */ /* r0 return result or -1 */ squareRoot: push {r1-r5,lr} @ save registers cmp r0,#0 beq 100f @ if zero -> end movlt r0,#-1 @ if negatif return - 1 blt 100f cmp r0,#4 @ if < 4 return 1 movlt r0,#1 blt 100f @ start clz r2,r0 @ number of zeros on the left rsb r2,#32 @ so many useful numbers right bic r2,#1 @ to have an even number of digits mov r3,#0b11 @ mask for extract 2 bits lsl r3,r2 mov r1,#0 @ init résult with 0 mov r4,#0 @ raz remainder area 1: @ begin loop and r5,r0,r3 @ extract 2 bits with mask add r4,r5,lsr r2 @ shift right and addition with remainder lsl r5,r1,#1 @ multiplication by 2 lsl r5,#1 @ shift left one bit orr r5,#1 @ bit right = 1 lsl r1,#1 @ shift left one bit subs r4,r5 @ sub remainder addmi r4,r4,r5 @ if negative restaur register addpl r1,#1 @ else add 1 subs r2,#2 @ decrement number bits movmi r0,r1 @ if end return result bmi 100f lsl r4,#2 @ no -> shift left remainder 2 bits lsr r3,#2 @ and shift right mask 2 bits b 1b @ and loop 100: pop {r1-r5,lr} @ restaur registers bx lr @return /******************************************************************/ /* display text with size calculation */ /******************************************************************/ /* r0 contains the address of the message */ affichageMess: push {r0,r1,r2,r7,lr} @ save registres mov r2,#0 @ counter length 1: @ loop length calculation ldrb r1,[r0,r2] @ read octet start position + index cmp r1,#0 @ if 0 its over addne r2,r2,#1 @ else add 1 in the length bne 1b @ and loop @ so here r2 contains the length of the message mov r1,r0 @ address message in r1 mov r0,#STDOUT @ code to write to the standard output Linux mov r7, #WRITE @ code call system "write" svc #0 @ call systeme pop {r0,r1,r2,r7,lr} @ restaur des 2 registres */ bx lr @ return /******************************************************************/ /* Converting a register to a decimal unsigned */ /******************************************************************/ /* r0 contains value and r1 address area */ /* r0 return size of result (no zero final in area) */ /* area size => 11 bytes */ .equ LGZONECAL, 10 conversion10: push {r1-r4,lr} @ save registers mov r3,r1 mov r2,#LGZONECAL 1: @ start loop bl divisionpar10U @ unsigned r0 <- dividende. quotient ->r0 reste -> r1 add r1,#48 @ digit strb r1,[r3,r2] @ store digit on area cmp r0,#0 @ stop if quotient = 0 subne r2,#1 @ else previous position bne 1b @ and loop @ and move digit from left of area mov r4,#0 2: ldrb r1,[r3,r2] strb r1,[r3,r4] add r2,#1 add r4,#1 cmp r2,#LGZONECAL ble 2b @ and move spaces in end on area mov r0,r4 @ result length mov r1,#' ' @ space 3: strb r1,[r3,r4] @ store space in area add r4,#1 @ next position cmp r4,#LGZONECAL ble 3b @ loop if r4 <= area size 100: pop {r1-r4,lr} @ restaur registres bx lr @return /***************************************************/ /* division par 10 unsigned */ /***************************************************/ /* r0 dividende */ /* r0 quotient */ /* r1 remainder */ divisionpar10U: push {r2,r3,r4, lr} mov r4,r0 @ save value ldr r3,iMagicNumber @ r3 <- magic_number raspberry 1 2 umull r1, r2, r3, r0 @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0) mov r0, r2, LSR #3 @ r2 <- r2 >> shift 3 add r2,r0,r0, lsl #2 @ r2 <- r0 * 5 sub r1,r4,r2, lsl #1 @ r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) pop {r2,r3,r4,lr} bx lr @ leave function iMagicNumber: .int 0xCCCCCCCD