; use { } to read a set (define A { 1 2 3 4 3 5 5}) → { 1 2 3 4 5 } ; duplicates are removed from a set ; or use make-set to make a set from a list (define B (make-set ' ( 3 4 5 6 7 8 8))) → { 3 4 5 6 7 8 } (set-intersect A B) → { 3 4 5 } (set-intersect? A B) → #t ; predicate (set-union A B) → { 1 2 3 4 5 6 7 8 } (set-substract A B) → { 1 2 } (set-sym-diff A B) → { 1 2 6 7 8 } ; ∆ symmetric difference (set-equal? A B) → #f (set-equal? { a b c} { c b a}) → #t ; order is unimportant (set-subset? A B) → #f ; B in A or B = A (set-subset? A { 3 4 }) → #t (member 4 A) → (4 5) ; same as #t : true (member 9 A) → #f ; check basic equalities (set-equal? A (set-union (set-intersect A B) (set-substract A B))) → #t (set-equal? (set-union A B) (set-union (set-sym-diff A B) (set-intersect A B))) → #t ; × : cartesian product of two sets : all pairs (a . b) , a in A, b in B ; returns a list (not a set) (define A { albert simon}) (define B { antoinette ornella marylin}) (set-product A B) → ((albert . antoinette) (albert . marylin) (albert . ornella) (simon . antoinette) (simon . marylin) (simon . ornella)) ; sets elements may be sets { { a b c} {c b a } { a b d}} → { { a b c } { a b d } } ; duplicate removed ; A few functions return sets : (primes 10) → { 2 3 5 7 11 13 17 19 23 29 }