constant N = 15, M=3 sequence x = {1.47,1.50,1.52,1.55,1.57, 1.60,1.63,1.65,1.68,1.70, 1.73,1.75,1.78,1.80,1.83}, y = {52.21,53.12,54.48,55.84,57.20, 58.57,59.93,61.29,63.11,64.47, 66.28,68.10,69.92,72.19,74.46}, s = repeat(0,N), t = repeat(0,N), a = repeat(repeat(0,M+1),M) for k=1 to 2*M do for i=1 to N do s[k] += power(x[i],k-1) if k<=M then t[k] += y[i]*power(x[i],k-1) end if end for end for -- build linear system for row=1 to M do for col=1 to M do a[row,col] = s[row+col-1] end for a[row,M+1] = t[row] end for puts(1,"Linear system coefficents:\n") pp(a,{pp_Nest,1,pp_IntFmt,"%7.1f",pp_FltFmt,"%7.1f"}) for j=1 to M do integer i = j while a[i,j]=0 do i += 1 end while if i=M+1 then ?"SINGULAR MATRIX !" ?9/0 end if for k=1 to M+1 do {a[j,k],a[i,k]} = {a[i,k],a[j,k]} end for atom Y = 1/a[j,j] a[j] = sq_mul(a[j],Y) for i=1 to M do if i<>j then Y=-a[i,j] for k=1 to M+1 do a[i,k] += Y*a[j,k] end for end if end for end for puts(1,"Solutions:\n") ?columnize(a,M+1)[1]