/* ARM assembly Raspberry PI */ /* program loopwhile.s */ /* Constantes */ .equ STDOUT, 1 @ Linux output console .equ EXIT, 1 @ Linux syscall .equ WRITE, 4 @ Linux syscall /*********************************/ /* Initialized data */ /*********************************/ .data szMessResult: .ascii "" @ message result sMessValeur: .fill 11, 1, ' ' szCarriageReturn: .asciz "\n" /*********************************/ /* UnInitialized data */ /*********************************/ .bss /*********************************/ /* code section */ /*********************************/ .text .global main main: @ entry of program mov r4,#1024 @ loop counter 1: @ begin loop mov r0,r4 ldr r1,iAdrsMessValeur @ display value bl conversion10 @ decimal conversion ldr r0,iAdrszMessResult bl affichageMess @ display message ldr r0,iAdrszCarriageReturn bl affichageMess @ display return line lsr r4,#1 @ division by 2 cmp r4,#0 @ end ? bgt 1b @ no ->begin loop one 100: @ standard end of the program mov r0, #0 @ return code mov r7, #EXIT @ request to exit program svc #0 @ perform the system call iAdrsMessValeur: .int sMessValeur iAdrszMessResult: .int szMessResult iAdrszCarriageReturn: .int szCarriageReturn /******************************************************************/ /* display text with size calculation */ /******************************************************************/ /* r0 contains the address of the message */ affichageMess: push {r0,r1,r2,r7,lr} @ save registres mov r2,#0 @ counter length 1: @ loop length calculation ldrb r1,[r0,r2] @ read octet start position + index cmp r1,#0 @ if 0 its over addne r2,r2,#1 @ else add 1 in the length bne 1b @ and loop @ so here r2 contains the length of the message mov r1,r0 @ address message in r1 mov r0,#STDOUT @ code to write to the standard output Linux mov r7, #WRITE @ code call system "write" svc #0 @ call systeme pop {r0,r1,r2,r7,lr} @ restaur registers */ bx lr @ return /******************************************************************/ /* Converting a register to a decimal */ /******************************************************************/ /* r0 contains value and r1 address area */ .equ LGZONECAL, 10 conversion10: push {r1-r4,lr} @ save registers mov r3,r1 mov r2,#LGZONECAL 1: @ start loop bl divisionpar10 @ r0 <- dividende. quotient ->r0 reste -> r1 add r1,#48 @ digit strb r1,[r3,r2] @ store digit on area cmp r0,#0 @ stop if quotient = 0 subne r2,#1 @ previous position bne 1b @ else loop @ end replaces digit in front of area mov r4,#0 2: ldrb r1,[r3,r2] strb r1,[r3,r4] @ store in area begin add r4,#1 add r2,#1 @ previous position cmp r2,#LGZONECAL @ end ble 2b @ loop mov r1,#0 @ final zero strb r1,[r3,r4] 100: pop {r1-r4,lr} @ restaur registres bx lr @return /***************************************************/ /* division par 10 signé */ /* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/* /* and http://www.hackersdelight.org/ */ /***************************************************/ /* r0 dividende */ /* r0 quotient */ /* r1 remainder */ divisionpar10: /* r0 contains the argument to be divided by 10 */ push {r2-r4} @ save registers */ mov r4,r0 mov r3,#0x6667 @ r3 <- magic_number lower movt r3,#0x6666 @ r3 <- magic_number upper smull r1, r2, r3, r0 @ r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) mov r2, r2, ASR #2 @ r2 <- r2 >> 2 mov r1, r0, LSR #31 @ r1 <- r0 >> 31 add r0, r2, r1 @ r0 <- r2 + r1 add r2,r0,r0, lsl #2 @ r2 <- r0 * 5 sub r1,r4,r2, lsl #1 @ r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) pop {r2-r4} bx lr @ return