/* ARM assembly Raspberry PI */ /* program loopdowhile.s */ /* Constantes */ .equ STDOUT, 1 @ Linux output console .equ EXIT, 1 @ Linux syscall .equ WRITE, 4 @ Linux syscall /*********************************/ /* Initialized data */ /*********************************/ .data szMessResult: .ascii "Counter = " @ message result sMessValeur: .fill 12, 1, ' ' .asciz "\n" /*********************************/ /* UnInitialized data */ /*********************************/ .bss /*********************************/ /* code section */ /*********************************/ .text .global main main: @ entry of program push {fp,lr} @ saves 2 registers mov r4,#0 1: @ begin loop mov r0,r4 ldr r1,iAdrsMessValeur @ display value bl conversion10 @ call function with 2 parameter (r0,r1) ldr r0,iAdrszMessResult bl affichageMess @ display message add r4,#1 @ increment counter mov r0,r4 mov r1,#6 @ division conuter by 6 bl division cmp r3,#0 @ remainder = zéro ? bne 1b @ no ->begin loop one 100: @ standard end of the program mov r0, #0 @ return code pop {fp,lr} @restaur 2 registers mov r7, #EXIT @ request to exit program svc #0 @ perform the system call iAdrsMessValeur: .int sMessValeur iAdrszMessResult: .int szMessResult /******************************************************************/ /* display text with size calculation */ /******************************************************************/ /* r0 contains the address of the message */ affichageMess: push {r0,r1,r2,r7,lr} @ save registres mov r2,#0 @ counter length 1: @ loop length calculation ldrb r1,[r0,r2] @ read octet start position + index cmp r1,#0 @ if 0 its over addne r2,r2,#1 @ else add 1 in the length bne 1b @ and loop @ so here r2 contains the length of the message mov r1,r0 @ address message in r1 mov r0,#STDOUT @ code to write to the standard output Linux mov r7, #WRITE @ code call system "write" svc #0 @ call systeme pop {r0,r1,r2,r7,lr} @ restaur des 2 registres */ bx lr @ return /******************************************************************/ /* Converting a register to a decimal */ /******************************************************************/ /* r0 contains value and r1 address area */ conversion10: push {r1-r4,lr} @ save registers mov r3,r1 mov r2,#10 1: @ start loop bl divisionpar10 @ r0 <- dividende. quotient ->r0 reste -> r1 add r1,#48 @ digit strb r1,[r3,r2] @ store digit on area sub r2,#1 @ previous position cmp r0,#0 @ stop if quotient = 0 */ bne 1b @ else loop @ and move spaces in first on area mov r1,#' ' @ space 2: strb r1,[r3,r2] @ store space in area subs r2,#1 @ @ previous position bge 2b @ loop if r2 >= zéro 100: pop {r1-r4,lr} @ restaur registres bx lr @return /***************************************************/ /* division par 10 signé */ /* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/* /* and http://www.hackersdelight.org/ */ /***************************************************/ /* r0 dividende */ /* r0 quotient */ /* r1 remainder */ divisionpar10: /* r0 contains the argument to be divided by 10 */ push {r2-r4} /* save registers */ mov r4,r0 mov r3,#0x6667 @ r3 <- magic_number lower movt r3,#0x6666 @ r3 <- magic_number upper smull r1, r2, r3, r0 @ r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) mov r2, r2, ASR #2 /* r2 <- r2 >> 2 */ mov r1, r0, LSR #31 /* r1 <- r0 >> 31 */ add r0, r2, r1 /* r0 <- r2 + r1 */ add r2,r0,r0, lsl #2 /* r2 <- r0 * 5 */ sub r1,r4,r2, lsl #1 /* r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) */ pop {r2-r4} bx lr /* leave function */ /***************************************************/ /* integer division unsigned */ /***************************************************/ division: /* r0 contains dividend */ /* r1 contains divisor */ /* r2 returns quotient */ /* r3 returns remainder */ push {r4, lr} mov r2, #0 @ init quotient mov r3, #0 @ init remainder mov r4, #32 @ init counter bits b 2f 1: @ loop movs r0, r0, LSL #1 @ r0 <- r0 << 1 updating cpsr (sets C if 31st bit of r0 was 1) adc r3, r3, r3 @ r3 <- r3 + r3 + C. This is equivalent to r3 ? (r3 << 1) + C cmp r3, r1 @ compute r3 - r1 and update cpsr subhs r3, r3, r1 @ if r3 >= r1 (C=1) then r3 ? r3 - r1 adc r2, r2, r2 @ r2 <- r2 + r2 + C. This is equivalent to r2 <- (r2 << 1) + C 2: subs r4, r4, #1 @ r4 <- r4 - 1 bpl 1b @ if r4 >= 0 (N=0) then loop pop {r4, lr} bx lr