defmodule Longest_increasing_subsequence do # Patience sort implementation def patience_lis(l), do: patience_lis(l, []) defp patience_lis([h | t], []), do: patience_lis(t, [[{h,[]}]]) defp patience_lis([h | t], stacks), do: patience_lis(t, place_in_stack(h, stacks, [])) defp patience_lis([], []), do: [] defp patience_lis([], stacks), do: get_previous(stacks) |> recover_lis |> Enum.reverse defp place_in_stack(e, [stack = [{h,_} | _] | tstacks], prevstacks) when h > e do prevstacks ++ [[{e, get_previous(prevstacks)} | stack] | tstacks] end defp place_in_stack(e, [stack | tstacks], prevstacks) do place_in_stack(e, tstacks, prevstacks ++ [stack]) end defp place_in_stack(e, [], prevstacks) do prevstacks ++ [[{e, get_previous(prevstacks)}]] end defp get_previous(stack = [_|_]), do: hd(List.last(stack)) defp get_previous([]), do: [] defp recover_lis({e, prev}), do: [e | recover_lis(prev)] defp recover_lis([]), do: [] end IO.inspect Longest_increasing_subsequence.patience_lis([3,2,6,4,5,1]) IO.inspect Longest_increasing_subsequence.patience_lis([0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15])