function coefficients = binomialCoeff(n,k) coefficients = zeros(numel(n),numel(k)); %Preallocate memory columns = (1:numel(k)); %Preallocate row and column counters rows = (1:numel(n)); %Iterate over every row and column. The rows represent the n number, %and the columns represent the k number. If n is ever greater than k, %the nchoosek function will throw an error. So, we test to make sure %it isn't, if it is then we leave that entry in the coefficients matrix %zero. Which makes sense combinatorically. for row = rows for col = columns if k(col) <= n(row) coefficients(row,col) = nchoosek(n(row),k(col)); end end end end %binomialCoeff