without warning -- (several unused routines in this code) constant NUM = 1, DEN = 2 type frac(object r) return sequence(r) and integer(r[NUM]) and integer(r[DEN]) and length(r)=2 end type function normalise(object n, atom d=0) atom g if sequence(n) then {n,d} = n end if if d<0 then n = -n d = -d end if g = gcd(n,d) return {n/g,d/g} end function function frac_new(integer n,d=1) return normalise(n,d) end function function frac_abs(frac r) return {abs(r[NUM]),r[DEN]} end function function frac_inv(frac r) return reverse(r) end function function frac_add(frac a, frac b) integer {an,ad} = a, {bn,bd} = b return normalise(an*bd+bn*ad,ad*bd) end function function frac_sub(frac a, frac b) integer {an,ad} = a, {bn,bd} = b return normalise(an*bd-bn*ad,ad*bd) end function function frac_mul(frac a, frac b) integer {an,ad} = a, {bn,bd} = b return normalise(an*bn,ad*bd) end function function frac_div(frac a, frac b) integer {an,ad} = a, {bn,bd} = b return normalise(an*bd,ad*bn) end function function frac_eq(frac a, frac b) return a==b end function function frac_ne(frac a, frac b) return a!=b end function function frac_lt(frac a, frac b) return frac_sub(a,b)[NUM]<0 end function function frac_gt(frac a, frac b) return frac_sub(a,b)[NUM]>0 end function function frac_le(frac a, frac b) return frac_sub(a,b)[NUM]<=0 end function function frac_ge(frac a, frac b) return frac_sub(a,b)[NUM]>=0 end function function is_perfect(integer num) frac sum = frac_new(0) sequence f = factors(num,1) for i=1 to length(f) do sum = frac_add(sum,frac_new(1,f[i])) end for return frac_eq(sum,frac_new(2)) end function procedure get_perfect_numbers() atom t0 = time() for i=2 to power(2,19) do if is_perfect(i) then printf(1,"perfect: %d\n",i) end if end for printf(1,"elapsed: %3.2f seconds\n",time()-t0) integer pn5 = power(2,12)*(power(2,13)-1) -- 5th perfect number if is_perfect(pn5) then printf(1,"perfect: %d\n",pn5) end if end procedure get_perfect_numbers()