module module_rational implicit none private public :: rational public :: rational_simplify public :: assignment (=) public :: operator (//) public :: operator (+) public :: operator (-) public :: operator (*) public :: operator (/) public :: operator (<) public :: operator (<=) public :: operator (>) public :: operator (>=) public :: operator (==) public :: operator (/=) public :: abs public :: int public :: modulo type rational integer :: numerator integer :: denominator end type rational interface assignment (=) module procedure assign_rational_int, assign_rational_real end interface interface operator (//) module procedure make_rational end interface interface operator (+) module procedure rational_add end interface interface operator (-) module procedure rational_minus, rational_subtract end interface interface operator (*) module procedure rational_multiply end interface interface operator (/) module procedure rational_divide end interface interface operator (<) module procedure rational_lt end interface interface operator (<=) module procedure rational_le end interface interface operator (>) module procedure rational_gt end interface interface operator (>=) module procedure rational_ge end interface interface operator (==) module procedure rational_eq end interface interface operator (/=) module procedure rational_ne end interface interface abs module procedure rational_abs end interface interface int module procedure rational_int end interface interface modulo module procedure rational_modulo end interface contains recursive function gcd (i, j) result (res) integer, intent (in) :: i integer, intent (in) :: j integer :: res if (j == 0) then res = i else res = gcd (j, modulo (i, j)) end if end function gcd function rational_simplify (r) result (res) type (rational), intent (in) :: r type (rational) :: res integer :: g g = gcd (r % numerator, r % denominator) res = r % numerator / g // r % denominator / g end function rational_simplify function make_rational (numerator, denominator) result (res) integer, intent (in) :: numerator integer, intent (in) :: denominator type (rational) :: res res = rational (numerator, denominator) end function make_rational subroutine assign_rational_int (res, i) type (rational), intent (out), volatile :: res integer, intent (in) :: i res = i // 1 end subroutine assign_rational_int subroutine assign_rational_real (res, x) type (rational), intent(out), volatile :: res real, intent (in) :: x integer :: x_floor real :: x_frac x_floor = floor (x) x_frac = x - x_floor if (x_frac == 0) then res = x_floor // 1 else res = (x_floor // 1) + (1 // floor (1 / x_frac)) end if end subroutine assign_rational_real function rational_add (r, s) result (res) type (rational), intent (in) :: r type (rational), intent (in) :: s type (rational) :: res res = r % numerator * s % denominator + r % denominator * s % numerator // & & r % denominator * s % denominator end function rational_add function rational_minus (r) result (res) type (rational), intent (in) :: r type (rational) :: res res = - r % numerator // r % denominator end function rational_minus function rational_subtract (r, s) result (res) type (rational), intent (in) :: r type (rational), intent (in) :: s type (rational) :: res res = r % numerator * s % denominator - r % denominator * s % numerator // & & r % denominator * s % denominator end function rational_subtract function rational_multiply (r, s) result (res) type (rational), intent (in) :: r type (rational), intent (in) :: s type (rational) :: res res = r % numerator * s % numerator // r % denominator * s % denominator end function rational_multiply function rational_divide (r, s) result (res) type (rational), intent (in) :: r type (rational), intent (in) :: s type (rational) :: res res = r % numerator * s % denominator // r % denominator * s % numerator end function rational_divide function rational_lt (r, s) result (res) type (rational), intent (in) :: r type (rational), intent (in) :: s type (rational) :: r_simple type (rational) :: s_simple logical :: res r_simple = rational_simplify (r) s_simple = rational_simplify (s) res = r_simple % numerator * s_simple % denominator < & & s_simple % numerator * r_simple % denominator end function rational_lt function rational_le (r, s) result (res) type (rational), intent (in) :: r type (rational), intent (in) :: s type (rational) :: r_simple type (rational) :: s_simple logical :: res r_simple = rational_simplify (r) s_simple = rational_simplify (s) res = r_simple % numerator * s_simple % denominator <= & & s_simple % numerator * r_simple % denominator end function rational_le function rational_gt (r, s) result (res) type (rational), intent (in) :: r type (rational), intent (in) :: s type (rational) :: r_simple type (rational) :: s_simple logical :: res r_simple = rational_simplify (r) s_simple = rational_simplify (s) res = r_simple % numerator * s_simple % denominator > & & s_simple % numerator * r_simple % denominator end function rational_gt function rational_ge (r, s) result (res) type (rational), intent (in) :: r type (rational), intent (in) :: s type (rational) :: r_simple type (rational) :: s_simple logical :: res r_simple = rational_simplify (r) s_simple = rational_simplify (s) res = r_simple % numerator * s_simple % denominator >= & & s_simple % numerator * r_simple % denominator end function rational_ge function rational_eq (r, s) result (res) type (rational), intent (in) :: r type (rational), intent (in) :: s logical :: res res = r % numerator * s % denominator == s % numerator * r % denominator end function rational_eq function rational_ne (r, s) result (res) type (rational), intent (in) :: r type (rational), intent (in) :: s logical :: res res = r % numerator * s % denominator /= s % numerator * r % denominator end function rational_ne function rational_abs (r) result (res) type (rational), intent (in) :: r type (rational) :: res res = sign (r % numerator, r % denominator) // r % denominator end function rational_abs function rational_int (r) result (res) type (rational), intent (in) :: r integer :: res res = r % numerator / r % denominator end function rational_int function rational_modulo (r) result (res) type (rational), intent (in) :: r integer :: res res = modulo (r % numerator, r % denominator) end function rational_modulo end module module_rational