let Y= // Except for the η-abstraction necessary for applicative order languages, this is the formal Y combinator. f=>((g=>(f((...x)=>g(g)(...x)))) (g=>(f((...x)=>g(g)(...x))))), Y2= // Using β-abstraction to eliminate code repetition. f=>((f=>f(f)) (g=>(f((...x)=>g(g)(...x))))), Y3= // Using β-abstraction to separate out the self application combinator δ. ((δ=>f=>δ(g=>(f((...x)=>g(g)(...x))))) ((f=>f(f)))), fix= // β/η-equivalent fix point combinator. Easier to convert to memoise than the Y combinator. (((f)=>(g)=>(h)=>(f(h)(g(h)))) // The Substitute combinator out of SKI calculus ((f)=>(g)=>(...x)=>(f(g(g)))(...x)) // S((S(KS)K)S(S(KS)K))(KI) ((f)=>(g)=>(...x)=>(f(g(g)))(...x))), fix2= // β/η-converted form of fix above into a more compact form f=>(f=>f(f))(g=>(...x)=>f(g(g))(...x)), opentailfact= // Open version of the tail call variant of the factorial function fact=>(n,m=1)=>n<2?m:fact(n-1,n*m); tailfact= // Tail call version of factorial function Y(opentailfact);