The   '''totient'''   function is also known as: ::*   Euler's totient function ::*   Euler's phi totient function ::*   phi totient function ::*   Φ   function   (uppercase Greek phi) ::*   φ    function   (lowercase Greek phi) ;Definitions   (as per number theory): The totient function: ::*   counts the integers up to a given positive integer   '''n'''   that are relatively prime to   '''n''' ::*   counts the integers   '''k'''   in the range   '''1 ≤ k ≤ n'''   for which the greatest common divisor   '''gcd(n,k)'''   is equal to   '''1''' ::*   counts numbers   '''≤ n'''   and   prime to   '''n''' If the totient number   (for '''N''')   is one less than   '''N''',   then   '''N'''   is prime. ;Task: Create a   '''totient'''   function and: ::*   Find and display   (1 per line)   for the 1st   '''25'''   integers: ::::*   the integer   (the index) ::::*   the totient number for that integer ::::*   indicate if that integer is prime ::*   Find and display the   ''count''   of the primes up to          100 ::*   Find and display the   ''count''   of the primes up to       1,000 ::*   Find and display the   ''count''   of the primes up to     10,000 ::*   Find and display the   ''count''   of the primes up to   100,000     (optional) Show all output here. ;Related task: ::*   [[Perfect totient numbers]] ;Also see: ::*   [[wp:Euler's_totient_function|Wikipedia: Euler's totient function]]. ::*   [http://mathworld.wolfram.com/TotientFunction.html MathWorld: totient function]. ::*   [[oeis:/A000010|OEIS: Euler totient function phi(n)]].