# 20210126 Raku programming solution use Math::Libgsl::Constants; use Math::Libgsl::Matrix; use Math::Libgsl::BLAS; my @M; sub SQM (\in) { # create custom sq matrix from CSV die "Not a ■" if (my \L = in.split(/\,/)).sqrt != (my \size = L.sqrt.Int); my Math::Libgsl::Matrix \M .= new: size, size; for ^size Z L.rotor(size) -> ($i, @row) { M.set-row: $i, @row } M } sub infix:<⊗>(\x,\y) { # custom multiplication my Math::Libgsl::Matrix \z .= new: x.size1, x.size2; dgemm(CblasNoTrans, CblasNoTrans, 1, x, y, 1, z); z } sub infix:<⊕>(\x,\y) { # custom addition my Math::Libgsl::Matrix \z .= new: x.size1, x.size2; z.copy(x).add(y) } sub infix:<⊖>(\x,\y) { # custom subtraction my Math::Libgsl::Matrix \z .= new: x.size1, x.size2; z.copy(x).sub(y) } sub Strassen($A, $B) { { return $A ⊗ $B } if (my \n = $A.size1) == 1; my Math::Libgsl::Matrix ($A11,$A12,$A21,$A22,$B11,$B12,$B21,$B22); my Math::Libgsl::Matrix ($P1,$P2,$P3,$P4,$P5,$P6,$P7); my Math::Libgsl::Matrix::View ($mv1,$mv2,$mv3,$mv4,$mv5,$mv6,$mv7,$mv8); ($mv1,$mv2,$mv3,$mv4,$mv5,$mv6,$mv7,$mv8)».=new ; my \half = n div 2; # dimension of quarter submatrices $A11 = $mv1.submatrix($A, 0,0, half,half); # $A12 = $mv2.submatrix($A, 0,half, half,half); # create quarter views $A21 = $mv3.submatrix($A, half,0, half,half); # of operand matrices $A22 = $mv4.submatrix($A, half,half, half,half); # $B11 = $mv5.submatrix($B, 0,0, half,half); # 11 12 $B12 = $mv6.submatrix($B, 0,half, half,half); # $B21 = $mv7.submatrix($B, half,0, half,half); # 21 22 $B22 = $mv8.submatrix($B, half,half, half,half); # $P1 = Strassen($A12 ⊖ $A22, $B21 ⊕ $B22); $P2 = Strassen($A11 ⊕ $A22, $B11 ⊕ $B22); $P3 = Strassen($A11 ⊖ $A21, $B11 ⊕ $B12); $P4 = Strassen($A11 ⊕ $A12, $B22 ); $P5 = Strassen($A11, $B12 ⊖ $B22); $P6 = Strassen($A22, $B21 ⊖ $B11); $P7 = Strassen($A21 ⊕ $A22, $B11 ); my Math::Libgsl::Matrix $C .= new: n, n; # Build C from my Math::Libgsl::Matrix::View ($mvC11,$mvC12,$mvC21,$mvC22); # C11 C12 ($mvC11,$mvC12,$mvC21,$mvC22)».=new ; # C21 C22 given $mvC11.submatrix($C, 0,0, half,half) { .add: (($P1 ⊕ $P2) ⊖ $P4) ⊕ $P6 }; given $mvC12.submatrix($C, 0,half, half,half) { .add: $P4 ⊕ $P5 }; given $mvC21.submatrix($C, half,0, half,half) { .add: $P6 ⊕ $P7 }; given $mvC22.submatrix($C, half,half, half,half) { .add: (($P2 ⊖ $P3) ⊕ $P5) ⊖ $P7 }; $C } for $=pod[0].contents { next if /^\n$/ ; @M.append: SQM $_ } for @M.rotor(2) { my $product = @_[0] ⊗ @_[1]; # $product.get-row($_)».round(1).fmt('%2d').put for ^$product.size1; say "Regular multiply:"; $product.get-row($_)».fmt('%.10g').put for ^$product.size1; $product = Strassen @_[0], @_[1]; say "Strassen multiply:"; $product.get-row($_)».fmt('%.10g').put for ^$product.size1; } =begin code 1,2,3,4 5,6,7,8 1,1,1,1,2,4,8,16,3,9,27,81,4,16,64,256 4,-3,4/3,-1/4,-13/3,19/4,-7/3,11/24,3/2,-2,7/6,-1/4,-1/6,1/4,-1/6,1/24 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1 =end code