#include #include #include #include #include #include class P_adic_square_root { public: // Create a P_adic_square_root number, with p = 'prime', from the given rational 'numerator' / 'denominator'. P_adic_square_root(const uint32_t& prime, const uint32_t& precision, int32_t numerator, int32_t denominator) : prime(prime), precision(precision) { if ( denominator == 0 ) { throw std::invalid_argument("Denominator cannot be zero"); } order = 0; // Process rational zero if ( numerator == 0 ) { digits.assign(digits_size, 0); order = ORDER_MAX; return; } // Remove multiples of 'prime' and adjust the order of the P_adic_square_root number accordingly while ( modulo(numerator, prime) == 0 ) { numerator /= static_cast(prime); order += 1; } while ( modulo(denominator, prime) == 0 ) { denominator /= static_cast(prime); order -= 1; } if ( ( order & 1 ) != 0 ) { throw std::invalid_argument("Number does not have a square root in " + std::to_string(prime) + "-adic"); } order >>= 1; if ( prime == 2 ) { square_root_even_prime(numerator, denominator); } else { square_root_odd_prime(numerator, denominator); } } // Return the additive inverse of this P_adic_square_root number. P_adic_square_root negate() { if ( digits.empty() ) { return *this; } std::vector negated = digits; negate_digits(negated); return P_adic_square_root(prime, precision, negated, order); } // Return the product of this P_adic_square_root number and the given P_adic_square_root number. P_adic_square_root multiply(P_adic_square_root other) { if ( prime != other.prime ) { throw std::invalid_argument("Cannot multiply p-adic's with different primes"); } if ( digits.empty() || other.digits.empty() ) { return P_adic_square_root(prime, precision, 0 , 1); } return P_adic_square_root(prime, precision, multiply(digits, other.digits), order + other.order); } // Return a string representation of this P_adic_square_root as a rational number. std::string convertToRational() { std::vector numbers = digits; if ( numbers.empty() ) { return "0 / 1"; } // Lagrange lattice basis reduction in two dimensions int64_t series_sum = numbers.front(); int64_t maximum_prime = 1; for ( uint32_t i = 1; i < precision; ++i ) { maximum_prime *= prime; series_sum += numbers[i] * maximum_prime; } std::vector one = { maximum_prime, series_sum }; std::vector two = { 0, 1 }; int64_t previous_norm = series_sum * series_sum + 1; int64_t current_norm = previous_norm + 1; uint32_t i = 0; uint32_t j = 1; while ( previous_norm < current_norm ) { int64_t numerator = one[i] * one[j] + two[i] * two[j]; int64_t denominator = previous_norm; current_norm = std::floor(static_cast(numerator) / denominator + 0.5); one[i] -= current_norm * one[j]; two[i] -= current_norm * two[j]; current_norm = previous_norm; previous_norm = one[i] * one[i] + two[i] * two[i]; if ( previous_norm < current_norm ) { std::swap(i, j); } } int64_t x = one[j]; int64_t y = two[j]; if ( y < 0 ) { y = -y; x = -x; } if ( std::abs(one[i] * y - x * two[i]) != maximum_prime ) { throw std::invalid_argument("Rational reconstruction failed."); } for ( int32_t k = order; k < 0; ++k ) { y *= prime; } for ( int32_t k = order; k > 0; --k ) { x *= prime; } return std::to_string(x) + " / " + std::to_string(y); } // Return a string representation of this P_adic_square_root. std::string to_string() { std::vector numbers = digits; pad_with_zeros(numbers); std::string result = ""; for ( int64_t i = numbers.size() - 1; i >= 0; --i ) { result += std::to_string(digits[i]); } if ( order >= 0 ) { for ( int32_t i = 0; i < order; ++i ) { result += "0"; } result += ".0"; } else { result.insert(result.length() + order, "."); while ( result[result.length() - 1] == '0' ) { result = result.substr(0, result.length() - 1); } } return " ..." + result.substr(result.length() - precision - 1); } private: /** * Create a P_adic_square_root, with p = 'prime', directly from a vector of digits. * * For example: with 'order' = 0, the vector [1, 2, 3, 4, 5] creates the P_adic_square_root ...54321.0, * 'order' > 0 shifts the vector 'order' places to the left and * 'order' < 0 shifts the vector 'order' places to the right. */ P_adic_square_root( const uint32_t& prime, const uint32_t& precision, const std::vector& digits, const int32_t& order) : prime(prime), precision(precision), digits(digits), order(order) { } // Create a 2-adic number which is the square root of the rational 'numerator' / 'denominator'. void square_root_even_prime(const int32_t& numerator, const int32_t& denominator) { if ( modulo(numerator * denominator, 8) != 1 ) { throw std::invalid_argument("Number does not have a square root in 2-adic"); } // First digit uint64_t sum = 1; digits.emplace_back(sum); // Further digits while ( digits.size() < digits_size ) { int64_t factor = denominator * sum * sum - numerator; uint32_t valuation = 0; while ( modulo(factor, 2) == 0 ) { factor /= 2; valuation += 1; } sum += std::pow(2, valuation - 1); for ( uint32_t i = digits.size(); i < valuation - 1; ++i ) { digits.emplace_back(0); } digits.emplace_back(1); } } // Create a p-adic number, with an odd prime number, p = 'prime', // which is the p-adic square root of the given rational 'numerator' / 'denominator'. void square_root_odd_prime(const int32_t& numerator, const int32_t& denominator) { // First digit int32_t first_digit = 0; for ( int32_t i = 1; i < prime && first_digit == 0; ++i ) { if ( modulo(denominator * i * i - numerator, prime) == 0 ) { first_digit = i; } } if ( first_digit == 0 ) { throw std::invalid_argument("Number does not have a square root in " + std::to_string(prime) + "-adic"); } digits.emplace_back(first_digit); // Further digits const uint64_t coefficient = modulo_inverse(modulo(2 * denominator * first_digit, prime)); uint64_t sum = first_digit; for ( uint32_t i = 2; i < digits_size; ++i ) { int64_t next_sum = sum - ( coefficient * ( denominator * sum * sum - numerator ) ); next_sum = modulo(next_sum, static_cast(std::pow(prime, i))); next_sum -= sum; sum += next_sum; const uint32_t digit = next_sum / std::pow(prime, i - 1); digits.emplace_back(digit); } } // Return the list obtained by multiplying the digits of the given two lists, // where the digits in each list are regarded as forming a single number in reverse. // For example 12 * 13 = 156 is computed as [2, 1] * [3, 1] = [6, 5, 1]. std::vector multiply(const std::vector& one, const std::vector& two) { std::vector product(one.size() + two.size(), 0); for ( uint32_t b = 0; b < two.size(); ++b ) { uint32_t carry = 0; for ( uint32_t a = 0; a < one.size(); ++a ) { product[a + b] += one[a] * two[b] + carry; carry = product[a + b] / prime; product[a + b] %= prime; } product[b + one.size()] = carry; } return std::vector(product.begin(), product.begin() + digits_size); } // Return the multiplicative inverse of the given number modulo 'prime'. uint32_t modulo_inverse(const uint32_t& number) const { uint32_t inverse = 1; while ( modulo(inverse * number, prime) != 1 ) { inverse += 1; } return inverse; } // Return the given number modulo 'prime' in the range 0..'prime' - 1. int32_t modulo(const int64_t& number, const int64_t& modulus) const { const int32_t div = static_cast(number % modulus); return ( div >= 0 ) ? div : div + modulus; } // Transform the given vector of digits representing a p-adic number // into a vector which represents the negation of the p-adic number. void negate_digits(std::vector& numbers) { numbers[0] = modulo(prime - numbers[0], prime); for ( uint64_t i = 1; i < numbers.size(); ++i ) { numbers[i] = prime - 1 - numbers[i]; } } // The given vector is padded on the right by zeros up to a maximum length of 'DIGITS_SIZE'. void pad_with_zeros(std::vector& vector) { while ( vector.size() < digits_size ) { vector.emplace_back(0); } } const int32_t prime; const uint32_t precision; const uint32_t digits_size = precision + 5; std::vector digits; int32_t order; static const uint32_t ORDER_MAX = 1'000; }; int main() { std::vector> tests = { { 2, 20, 497, 10496 }, { 5, 14, 86, 25 }, { 7, 10, -19, 1 } }; for ( const std::vector& test : tests ) { std::cout << "Number: " << test[2] << " / " << test[3] << " in " << test[0] << "-adic" << std::endl; P_adic_square_root square_root(test[0], test[1], test[2], test[3]); std::cout << "The two square roots are:" << std::endl; std::cout << " " << square_root.to_string() << std::endl; std::cout << " " << square_root.negate().to_string() << std::endl; P_adic_square_root square = square_root.multiply(square_root); std::cout << "The p-adic value is " << square.to_string() << std::endl; std::cout << "The rational value is " << square.convertToRational() << std::endl; std::cout << std::endl; } }