// number of points and M.R. polynom degree N = 14 M = 2 Q = 3 dim X(N) // data points X(0) = 1.47 : X(1) = 1.50 : X(2) = 1.52 X(3) = 1.55 : X(4) = 1.57 : X(5) = 1.60 X(6) = 1.63 : X(7) = 1.65 : X(8) = 1.68 X(9) = 1.70 : X(10) = 1.73 : X(11) = 1.75 X(12) = 1.78 : X(13) = 1.80 : X(14) = 1.83 dim Y(N) // data points Y(0) = 52.21 : Y(1) = 53.12 : Y(2) = 54.48 Y(3) = 55.84 : Y(4) = 57.20 : Y(5) = 58.57 Y(6) = 59.93 : Y(7) = 61.29 : Y(8) = 63.11 Y(9) = 64.47 : Y(10) = 66.28 : Y(11) = 68.10 Y(12) = 69.92 : Y(13) = 72.19 : Y(14) = 74.46 dim S(N), T(N) // linear system coefficient dim A(M, Q) // sistem to be solved dim p(M, Q) for k = 0 to 2*M S(k) = 0 : T(k) = 0 for i = 0 to N S(k) = S(k) + X(i) ^ k if k <= M T(k) = T(k) + Y(i) * X(i) ^ k next i next k // build linear system for fila = 0 to M for columna = 0 to M A(fila, columna) = S(fila+columna) next columna A(fila, columna) = T(fila) next fila print "Linear system coefficents:" for i = 0 to M for j = 0 to M+1 print A(i,j) using "#####.#"; next j print next i for j = 0 to M for i = j to M if A(i,j) <> 0 break next i if i = M+1 then print "\nSINGULAR MATRIX '" end end if for k = 0 to M+1 p(j,k) = A(i,k) : A(i,k) = p(j,k) : A(j,k) = A(i,k) next k z = 1 / A(j,j) for k = 0 to M+1 A(j,k) = z * A(j,k) next k for i = 0 to M if i <> j then z = -A(i,j) for k = 0 to M+1 A(i,k) = A(i,k) + z * A(j,k) next k end if next i next j print "\nSolutions:" for i = 0 to M print A(i,M+1) using "#######.#######"; next i print end