dim ln$(19) ln$(1) = " 55" ln$(2) = " 94 48" ln$(3) = " 95 30 96" ln$(4) = " 77 71 26 67" ln$(5) = " 97 13 76 38 45" ln$(6) = " 07 36 79 16 37 68" ln$(7) = " 48 07 09 18 70 26 06" ln$(8) = " 18 72 79 46 59 79 29 90" ln$(9) = " 20 76 87 11 32 07 07 49 18" ln$(10) = " 27 83 58 35 71 11 25 57 29 85" ln$(11) = " 14 64 36 96 27 11 58 56 92 18 55" ln$(12) = " 02 90 03 60 48 49 41 46 33 36 47 23" ln$(13) = " 92 50 48 02 36 59 42 79 72 20 82 77 42" ln$(14) = " 56 78 38 80 39 75 02 71 66 66 01 03 55 72" ln$(15) = " 44 25 67 84 71 67 11 61 40 57 58 89 40 56 36" ln$(16) = " 85 32 25 85 57 48 84 35 47 62 17 01 01 99 89 52" ln$(17) = " 06 71 28 75 94 48 37 10 23 51 06 48 53 18 74 98 15" ln$(18) = " 27 02 92 23 08 71 76 84 15 52 92 63 81 10 44 10 69 93" ln$(19) = "end" dim matrix(20,20) x = 1 tam = 0 for n = 1 to 19 'ubound(ln$) - 1 ln2$ = trim$(ln$(n)) for y = 1 to x matrix(x, y) = val(left$(ln2$, 2)) if len(ln2$) > 4 then ln2$ = mid$(ln2$, 4, len(ln2$)-4) next y x = x +1 tam = tam +1 next n for z = tam-1 to 1 step -1 for y = 1 to z s1 = matrix(z+1, y) s2 = matrix(z+1, y+1) if s1 > s2 then matrix(z, y) = matrix(z, y) +s1 else matrix(z, y) = matrix(z, y) +s2 end if next y next z print " maximum triangle path sum = "; matrix(1, 1)