import numpy as np import matplotlib.pyplot as plt d, h = 200, 1200 # pixel density (= image width) and image height n, r = 8000, 10000 # number of iterations and escape radius (r > 2) a = -.743643887037158704752191506114774 # coordinates by github.com/josch b = 0.131825904205311970493132056385139 # https://github.com/josch/mandelbrot x = np.linspace(0, 2, num=d+1) y = np.linspace(0, 2 * h / d, num=h+1) A, B = np.meshgrid(x * np.pi, y * np.pi) C = 8.0 * np.exp((A + B * 1j) * 1j) + (a + b * 1j) def iteration(C): Z, dZ = np.zeros_like(C), np.zeros_like(C) def iterate(C, Z, dZ): Z, dZ = Z * Z + C, 2 * Z * dZ + 1 return Z, dZ for i in range(n): M = abs(Z) < r Z[M], dZ[M] = iterate(C[M], Z[M], dZ[M]) return Z, dZ Z, dZ = iteration(C) D = np.zeros(C.shape) N = abs(Z) > 2 # exterior distance estimation D[N] = np.log(abs(Z[N])) * abs(Z[N]) / abs(dZ[N]) plt.imshow(D.T ** 0.05, cmap=plt.cm.nipy_spectral, origin="lower") plt.savefig("Mercator_Mandelbrot_map.png", dpi=200) M = 50 * (2 / d) * np.pi * np.exp(- B) # adjust marker size 50 as needed k, l = min(d, h) + 1, max(0, h - d) // 20 # adjust zoom level 20 as needed fig, axs = plt.subplots(2, 3, figsize=(12, 8)) for i, ax in enumerate(axs.flat): X, Y = C[i*l:i*l+k, 0:d].real, C[i*l:i*l+k, 0:d].imag S, T = M[0:k, 0:d] ** 2, D[i*l:i*l+k, 0:d] ** 0.5 ax.scatter(X, Y, s=S, c=T, cmap=plt.cm.nipy_spectral) ax.axis('equal') plt.savefig("Mercator_Mandelbrot_zoom.png", dpi=100)