import Data.List (transpose) fib :: (Integral b, Num a) => b -> a fib 0 = 0 -- this line is necessary because "something ^ 0" returns "fromInteger 1", which unfortunately -- in our case is not our multiplicative identity (the identity matrix) but just a 1x1 matrix of 1 fib n = (last . head . unMat) (Mat [[1, 1], [1, 0]] ^ n) -- Code adapted from Matrix exponentiation operator task --------------------- (<+>) :: Num c => [c] -> [c] -> [c] (<+>) = zipWith (+) (<*>) :: Num a => [a] -> [a] -> a (<*>) = (sum .) . zipWith (*) newtype Mat a = Mat { unMat :: [[a]] } deriving (Eq) instance Show a => Show (Mat a) where show xm = "Mat " ++ show (unMat xm) instance Num a => Num (Mat a) where negate xm = Mat $ map (map negate) $ unMat xm xm + ym = Mat $ zipWith (<+>) (unMat xm) (unMat ym) xm * ym = Mat [ [ xs Main.<*> ys -- to distinguish from standard applicative operator | ys <- transpose $ unMat ym ] | xs <- unMat xm ] fromInteger n = Mat [[fromInteger n]] abs = undefined signum = undefined -- TEST ---------------------------------------------------------------------- main :: IO () main = (print . take 10 . show . fib) (10 ^ 5)