using System; using System.Collections.Generic; using BI = System.Numerics.BigInteger; class Program { // A sparse array of values calculated along the way static SortedList sl = new SortedList(); // This routine is semi-recursive, but doesn't need to evaluate every number up to n. // Algorithm from here: http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html#section3 static BI Fsl(int n) { if (n < 2) return n; int n2 = n >> 1, pm = n2 + ((n & 1) << 1) - 1; IfNec(n2); IfNec(pm); return n2 > pm ? (2 * sl[pm] + sl[n2]) * sl[n2] : sqr(sl[n2]) + sqr(sl[pm]); // Helper routine for Fsl(). It adds an entry to the sorted list when necessary void IfNec(int x) { if (!sl.ContainsKey(x)) sl.Add(x, Fsl(x)); } // Helper function to square a BigInteger BI sqr(BI x) { return x * x; } } // Conventional iteration method (not used here) public static BI Fm(BI n) { if (n < 2) return n; BI cur = 0, pre = 1; for (int i = 0; i <= n - 1; i++) { BI sum = cur + pre; pre = cur; cur = sum; } return cur; } public static void Main() { int num = 2_000_000, digs = 35, vlen; var sw = System.Diagnostics.Stopwatch.StartNew(); var v = Fsl(num); sw.Stop(); Console.Write("{0:n3} ms to calculate the {1:n0}th Fibonacci number, ", sw.Elapsed.TotalMilliseconds, num); Console.WriteLine("number of digits is {0}", vlen = (int)Math.Ceiling(BI.Log10(v))); if (vlen < 10000) { sw.Restart(); Console.WriteLine(v); sw.Stop(); Console.WriteLine("{0:n3} ms to write it to the console.", sw.Elapsed.TotalMilliseconds); } else Console.Write("partial: {0}...{1}", v / BI.Pow(10, vlen - digs), v % BI.Pow(10, digs)); } }