def ToReducedRowEchelonForm( M ): if not M: return lead = 0 rowCount = len(M) columnCount = len(M[0]) for r in range(rowCount): if lead >= columnCount: return i = r while M[i][lead] == 0: i += 1 if i == rowCount: i = r lead += 1 if columnCount == lead: return M[i],M[r] = M[r],M[i] lv = M[r][lead] M[r] = [ mrx / lv for mrx in M[r]] for i in range(rowCount): if i != r: lv = M[i][lead] M[i] = [ iv - lv*rv for rv,iv in zip(M[r],M[i])] lead += 1 return M def pmtx(mtx): print ('\n'.join(''.join(' %4s' % col for col in row) for row in mtx)) def convolve(f, h): g = [0] * (len(f) + len(h) - 1) for hindex, hval in enumerate(h): for findex, fval in enumerate(f): g[hindex + findex] += fval * hval return g def deconvolve(g, f): lenh = len(g) - len(f) + 1 mtx = [[0 for x in range(lenh+1)] for y in g] for hindex in range(lenh): for findex, fval in enumerate(f): gindex = hindex + findex mtx[gindex][hindex] = fval for gindex, gval in enumerate(g): mtx[gindex][lenh] = gval ToReducedRowEchelonForm( mtx ) return [mtx[i][lenh] for i in range(lenh)] # h if __name__ == '__main__': h = [-8,-9,-3,-1,-6,7] f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1] g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7] assert convolve(f,h) == g assert deconvolve(g, f) == h