/* illustrating some functions on sets; names are self-explanatory */ a: {1, 2, 3, 4}; {1, 2, 3, 4} b: {2, 4, 6, 8}; {2, 4, 6, 8} intersection(a, b); {2, 4} union(a, b); {1, 2, 3, 4, 6, 8} powerset(a); {{}, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3}, {1, 3, 4}, {1, 4}, {2}, {2, 3}, {2, 3, 4}, {2, 4}, {3}, {3, 4}, {4}} set_partitions(a); {{{1}, {2}, {3}, {4}}, {{1}, {2}, {3, 4}}, {{1}, {2, 3}, {4}}, {{1}, {2, 3, 4}}, {{1}, {2, 4}, {3}}, {{1, 2}, {3}, {4}}, {{1, 2}, {3, 4}}, {{1, 2, 3}, {4}}, {{1, 2, 3, 4}}, {{1, 2, 4}, {3}}, {{1, 3}, {2}, {4}}, {{1, 3}, {2, 4}}, {{1, 3, 4}, {2}}, {{1, 4}, {2}, {3}}, {{1, 4}, {2, 3}}} setdifference(a, b); {1, 3} emptyp(a); false elementp(2, a); true cardinality(a); 4 cartesian_product(a, b); {[1, 2], [1, 4], [1, 6], [1, 8], [2, 2], [2, 4], [2, 6], [2, 8], [3, 2], [3, 4], [3, 6], [3, 8], [4, 2], [4, 4], [4, 6], [4, 8]} subsetp(a, b); false symmdifference(a, b); {1, 3, 6, 8} partition_set(union(a, b), evenp); [{1, 3}, {2, 4, 6, 8}] c: setify(makelist(fib(n), n, 1, 20)); {1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765} equiv_classes(c, lambda([m, n], mod(m - n, 3) = 0)); {{1, 13, 34, 55, 610, 1597, 2584}, {2, 5, 8, 89, 233, 377, 4181}, {3, 21, 144, 987, 6765}} disjointp(a, b); false adjoin(7, a); {1, 2, 3, 4, 7} a; {1, 2, 3, 4} disjoin(1, a); {2, 3, 4} a; {1, 2, 3, 4} subset(c, primep); {2, 3, 5, 13, 89, 233, 1597} permutations(a); {[1, 2, 3, 4], [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 4, 2], [1, 4, 2, 3], [1, 4, 3, 2], [2, 1, 3, 4], [2, 1, 4, 3], [2, 3, 1, 4], [2, 3, 4, 1], [2, 4, 1, 3], [2, 4, 3, 1], [3, 1, 2, 4], [3, 1, 4, 2], [3, 2, 1, 4], [3, 2, 4, 1], [3, 4, 1, 2], [3, 4, 2, 1], [4, 1, 2, 3], [4, 1, 3, 2], [4, 2, 1, 3], [4, 2, 3, 1], [4, 3, 1, 2], [4, 3, 2, 1]} setequalp(a, b); false